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ABSTRACT

The behavior of digital cross-correlation algorithms

as applied to image matchirng problems is examined in terms
of tne relationship between measureable image properties ard

algorithm characteristics. Statistical image quality meas-

ures are developed which could be employed in a preprocessor

to predict the performance of automatic stereo-compilation

equipment. The measures include a quantity derived from the

Cramer-Rao lower bound on the variance of any unbiased

parameter estimator, various contrast measures such as vari-

ance, contrast modulation, and median absolute deviation,

and a stazionarity detector related to the variance gracien:.

These measures are based on image and correlator models

whicn cescribe the behavior of correlation processors under

conji'ions of low image contrast or signal-to-noise ratio,

geometric cistortion, and image non-stationarity. Computer

simulations using synthetic imagery were performea to ver-

ify tne various models, ano indicate the potential for the

use of image quality measures in the preoicting of corre-

lation behavior. Implications of the models in terms of

correlation processor design ano implementation are dis-

cussed.

viii



CHAPTER I

INTRODUCTION

In many image Processing applications, it is neces-

sary to spatially register two or more images of an object

field obtained from different sensors or taken from the sa e

sensor at different times or locations. The registration of

two images consists of translating them relative to one an-

other so that they exactly overlay each other. The transla-

tion Kano possibly rotation) required to acnieve registra-

tion provides information concerning the relative positions

of tne sensors and points in the object field. Applications

of image registration are numerous and include such diverse

areas as guidance of unmanned vehicles, cnange detection,

target acquisition and tracking, and the Droduction of too-

graphic maps. -t is primarily the latter topic that is ad-

cressed herein although many of the concepts and problems

to be discussed are also found in other apolications.

A problem of considerable interest within the car-

tographic community is t hat of mechanizec "stereo-view ing,

tnet is, automatically locating identical (conjugate) points

on two or more aerial Dhotographs. The result of this in-

terest nas teen tne oevelopment of several automated stereo-

compilation systems including tne Universa Automatic ap

I
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Compilation Equipment (UNAMACE) (Thompson 1966], the AS-

1IB-X Stereo Mapper [Brumm, et al. 1976], the Gestalt Photo
Mapper GD*II [Crawley 1974], and the Heterodyne Optical

Correlator (HOC) [Balasubramanian 1976]. The principal

advantage of automatec s'ees-systems are thcir speed,

economy and precisino tr.cu~ h not necessarily accuracy).

Different human operators using a stereo-Plotter will not

achieve the same de;ree of repeatability as will the auto-

mated system. The human operator, however, is far more re-

liable. The limitation in machine reliability is a function

of the variability of terrain conditions over which it must

operate. The basic lunction of the automatic stereo-

compiler is to compare two nearly identical images (around

corresponding conjugate points) and determine the position

resulting in maximum similarity. The machine, however, is

unable to recognize objects or shapes. When the machine is

confronted with images that differ considerably in appear-

ance, it does not function properly. As we will see, under

conditions of steep terrain, the two images can differ sig-

nificantly. If there are points in one image that are not

visible in the other image, the results of the matching are,

in general, unpredictable. The human operator, on the other

hand, can recognize objects and shapes even if they differ

in scale or aspect. Most present tay automatic compilers

incorporate terrain slope correction features which allow

for on-line geometric correction of the distortion prodiced
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by terrain relief. this added capability, however, reduces

the overall system speed.

The automatic compiler is also less reliable in re-

gions of imagery devoid of contrast, particularly in tne

presence of' noise which tends to increase the difference be-

tween conjugate regions. Regardless of the sources of image

differences, the machine-occasionally "gets lost". That is,

it will come to a point where it is unable to locate identi-

cal corresponding imagery. When this occurs, the machine

will search until it is far off track. Finally an alarm is

sounded to notify an operator of' its condition. 'ecause of

the occurence of these conditions, the systems are only semi-

automatic at best.

g Stereo-compilation is accomplished by cross-

correlation. The pictorial information is first converted

into electrical signals via a scanning operation. The re-

sulting signals (either analog or digital) are then comn-

pared in a correlator circuit or computer. The translation,

or parallax, between the images is determined by the loca-

tion of the peak of the cross-correlation function indicat-

ing maximum similarity between image segments. Performance

for image registration is measured by the accuracy with

which the offset of the peak of the correlation -Function

matches the true parallax created by topographic relief and

sensor orientation.
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The term "correlation" is a generic term that in-

cludes a number of different algorithms and techniques

which will be described in Chapter 2. Each of the tech-

niques, however, generates a correlation function. An

example of such a function, c(7), is shown in Figure 1-!a.

Without loss of generality, it is assumed that the correct

peak position is at the origin of the i-axis. Due to a

variety of noise sources to be described in Chapter 4, there

are statistical fluctuations in the measured correlation

function, c(j), which are indicated by the dashed lines in

i Figure 1-i. These fluctuations can produce two distinctly

different types of correlation errors. An error occurring

even though the correct lobe of the correlation function i

chosen is called a "local registration error" as shown in

Figure l-1b. An error resulting from selecting an incorrect

lobe is commonly termed a "false acquisition error" as shown

in Figure i-lc. The conditions under which these errors

occur depend in part on the particular correlation tech-

nique. It is generally the case, however, that local regi-

stration errors occur in regions producing broad correlation

functions while false acquisition errors occur in regions

producing relatively narrow correlation functions.

1o matter what the actual physics of the correlation

process, the correlation calculations are subject to a cer-

tain amount of error, and the errors result in inaccurate

determination of parallax values. Frequently these errors



c(~

C (~C

c(~

cci

Figure 1-1. Correlation Errors
(a) no error
(b) local registration error
(c) false acquisition error
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are catastrophic and lead to terrain eleiation vilues that

are impossible or inconsistent. Even when the errors art

not catastrophic, it is of the greatest practical utility t3

know the magnitude of errors that are associated with a

particular region of an image. The degree to enich a par-

ticular region is "error prone' depenos on the physial

properties of the terrain, the correlation tecnnique, the

implementation of the technique, and the properties of *ne

image function as well as the various contaminating noise

sources. Knowledge of these relationships wcul allow zhe

development of stereo-compilation pre-processors to detect

image regions that are defecti. e (error prone) in the sense

that tne probability of correct conjugate acquisition is in-

adequate. .With such a "defect map", the correlation proces-

sor could operate adaptiiely within tne lollowing options:

(a) Reject the region and indicate tne neet

for new data acquisition,

(b) Reject the region and indicate that the

region can be siccessfully processed by

human operators,

(c) Switch to a differenz correir ticn te.h-

nique known to be less sensitive to the

particular defect,

(d) Enhance the region in some way to improve

the probability of correct conjugate ac-

quisition,
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(e) Accept the region as having sufficient

quality to process as usual.

The ability to pre-process stereo images in this

manner would allow improved resource allocation (human vs.

machine) and thus improve the overall throughput rate and

economy of the operation.

it is the primary purpose of this research effort

to e.am ine the behavior of digital image matching techniques

in terms of the relationship between measurable image proper-

ties and known algorithm characteristics and to develop image

iuality .measures wnich can be employed to predict the per-

formance of automatic stereo-compilation equipment. in the

remainoer :f tnis chapter we briefly review the basic con-

ceots :nvolved in stereo-compilation.

Stereo-Compilation Concepts

Figure 1-2 shows the geometry assumed in the analy-

sis. To simo ify notation, the functional relationships are

defined 4n one dimension only. Extension to two dimensions

is direct and does not alter any of the analysis. On the

ground tnere are t:o quantities of interest: the elevation,

e(X, and a corresponding intensity pattern, 4(X), which is

the result of light reflected from the features of the land.

The camera is located at an altitude of H above reference

elevation and the focal plane of the camera is assumed to be

parallel to the reference plane. The camera has focal length
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and the translation between images is the air base 3. Tao

coordinate variables, xI  and x2, are ascribed to the tNo

image planes. The geometry in Figure 1-2 is a so-called

"geometric positive"; the true image lies behind the focal

point of the camera and an inverted (geometric negative)

image is formed. By reflecting the image through the focal

point a geometric positive lying in front of the camera is

constructed and has the advantage of having the same sense

gof coordinate algebraic signs as the ground coordinate sys-

tem.

In practice, the acquisition of stereo-photographs

rarely results in images which are precisely vertical. The

rectification processes which correct for differences in

altitude and orientation of the sensor stations are the do-

main of photogrammetry [Thompson 1965] and no further con-

sideration is given them here.

It is assumed, then, that the following requirements

are fulfillec in order to obtain "perfect" photographs.

(a) The optical axis of the camera lens is

exactly vertical at the instant of

exposure.

(b) There is no forward movement of the

aircraft relative to the ground dring

the exposure time.

(c) The camera is free of distortion.

(d) Atmospneric conditions are idea,.

K!
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It is obvious that there is no practical possibility of reg-

ularly meeting these requirements. Fortunately, photogram-

metrists have developed corrective procedures which relegate

these effects as minor when compared to the contaminating

effects discussed in Chapter a.

Given the geometry of Figure 1-2, the coordinates x l

and x 2 of the two images of a single ground point located at

a distance X from the nadir point of image 1 can be deter-

mined by applying the rules of similar triangles. From

Figure ,-2 it is clear that

xZ (x - B)Z (-i)
x 1 = H - e X) x 2  H -e X)

The accumulation of image points forms the intensity pat-

terns observed in the image planes. The two intensity (or

density) patterns, gl(xl) and g2 (x2 ), correspond to the pro-

,jection of tne intensity pattern I(X) into the two image

planes. .ssming that the reflectance of the object field

is incepencent of the camera station, the procedure for con-

structing an intensity pattern in the image from an inten-

sity pattern on the ground can be characterized by the ex-

pres s ns

g 1 (x1 ) = i xl(H e(x))1 (l-2a)

[x 2 (H - e(X))]

g2 (x 2 ) = [B + (l-2b)

ohere A, and x2 are the projections of point X.



Equation (1-1) can also be solved for e(X):

e(X) H- BZ (1-3)xI - x2
*1 2

which shows that the elevation information is encoded in

Equation (1-1) in the form of the difference in coordinates

(parallax) of the conjugate points x I  and x The goal of

stereo-compilation systems, then, is to accurately identify

g conjugate points.

The effects of a parallax error on the computed

ground coordinates is shown in Figure 1-3. In a digital

system, the images are sampled to produce discrete resolu-

tion elements (pixels). Assuming such a system, we substi-

tute for the parallax in (1-3), x I  x2, the parallax in

terms of the number of pixels

x - x 2 = iLx j.x : (i - j)Ax (1-4)

where .Ix is the sampling distance. From (1-3),

e(X) = H - B (1-5)

- j z"x

If the parallax is in error by E pixels, the elevation er-

ror is given by

-Z (1-6)
6e : [(i - j) - EJ(i - j)7x

It is usually the case that the parallax errors are small

with respect to the actual magnitude of the parallax, i.e.,

(i - j)>>-. Thus (1-5) and (1-6) can be combined to give

e - -x[H - e(X)3 2 
E 1-7)BZ
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Equation (l-7) specifies the elevation resolution limit of

the aigital stereo-compiler. That is, the minimum detect-

able change in elevation is given by

e ' = &x [H - e (X ) ] 2

Ae[ i - 1 (1-8)
emin £ B Z

While the parameters H, B, and can be chosen during the

data acquisition stage, the only parameter available to the

processor is 5x, the sampling interval. Some image regis-

tration algorithms, however, attempt to improve on this res-

olution limit by interpolating the sampled correlation

function in the vicinity of the peak [Pearson, et al. 1977].

This procedure is generally avoided in digital stereo-

compilation systems due to the increased computational load.

Correlation errors also result in ground position errors

denoted by ,X in Figure 1-3. Applying similar triangles to

the geometry of Figure 1-3 reveals that

- i (1-9)6 e z

Because of the two dimensional terrain error, the perform-

ance of stereo-compilation systems is expressed in terms of

the parallax error.

Most of the stereo-compilation systems currently in

use were designed primarily for producing contour and pro-

file outputs. Recently, however, there nas been an increas-

ing need for topographic data in the form of digital grin-

point elevations. Although many of the existing systems can

be used to obtain such data, the AS-IlB-X stereo-mapper was
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developed specifically for this purpose [Brumm, et al. 1976".

As a result of improved image scanning techniques and high'y

parallel high speed digital processes, the AS-IIB-X is cap-

able of compilation speeds on the order of 10 to 50 times

faster than for conventional systems with comparable accu-

racy. One of the features of the AS-l!B-X which contributes

to the increase in throughput rate is that image-intensity

(or density) is scanned and measured on each photograph

along corresponaing epipolar lines. Epipolar lines are the

lines of intersection between the photographs and the set of

epipolar planes defined by the focal points of the two

camera stations as shown in Figure 1-4. With such a scan-

ning technique, the correlation function need only be one-

dimensional since conjugate points lie on corresponding

epipolar lines. Any re.sidual parallax in the direction

perpencicular to the epipolar lines is considered to be

negligible [Brumm, et al. 1976].

Thesis Outline

:n Chapter 2, we present a number of correlation

tecnniques that are commonly employed in image matching

aDplications and indicate the theoretical justification for

their use. :t is shown that the maximum likelihood similar-

ity measure takes the form of covariance (matched filter),

normalized covariance, or least squares, depending on the

a-priori ass Jmptions about the image formation model.
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The Cramer-Rao lower bound on the accuracy of any

unbiased estimator has been derived [Van Trees 1968] in the

context of radar target range determination by estimation of

signal round-trip time delay. A similar bound has been de-

veloped [Knapp and Carter 1976] in the context of estimat-

ing time delay between received signals at two spatially

separated sensors used in passive sonar systems. In Chap-

ter 3, these results are presented and compared and their

application to the prediction of errors in stereo-compilation

is discussed. The form of the bound derived by Knapp and

Carter (1976] is shown to apply to the image formation model

assumed and is thus considered as an image quality measure.

)It is impossible, except under severely restrictive

conditions, to derive a general expression for the probabil-

ity of a false acquisition. Attempting such a derivation,

however, leads to an image quality measure which is similar

to the "figure of merit" ascribed to correlator performance

by Webber and Delashmit [1974al. This figure of merit is

shown to be a function of both image area and local signal-

to-noise ratio.

in order to employ the figure of merit as an image

quality measure, it is necessary to determine the correlator

output signal-to-noise ratio. In Chapter 4, the covariance

function is analyzed in detail to determine the degree to

which sensor noise, quantization noise, "self" noise, and

machine noise corrupt correlator performance. Models for
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computer round-off errors are developed for both fixed point

and floating point correlation processors. The expressions

developed for the purpose of predicting correlator perform-

ance all require the assumption of input data (image) sta-

tionarity. Chapter 4 concludes with a discussion of the

effects of input data non-stationarity on correlator perfcrm-

ance. Two schemes for detecting such regions are presented

and the conditions under which such regions are considered

"defective" are discussed. It is shown that the covariance

processor is particularly susceptible to data non-stationarity.

In Chapter 5 we consider the effects of terrain vari-

ability on correlator performance and develop a model for

relief distortion" which is described by the function re-

quired to map an image region onto its conjugate. Under

simplifying assumptions, this mapping is shown to be a spa-

tial contraction or expansion in the direction parallel to

epipolar lines. The distortion modelled by this affine

transformation has been analyzed in detail by Mostafavi and

Smith [1978a, 1978b]. We review these results and discuss

the conditions under which they apply to the stereo-

compilation problem. Of particular interest here, however,

is the degree to which the effects of distortion on corre-

lation accuracy can be predicted. To this end, an "image

overlay quality" measure is developed in order to predict

the statistics of a parameter used to describe distortion

within a region of imagery. Due to the assumption required
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to make the problem tractable and the computational com-

plexity of the resulting procedure, it is concluded that

pre-processing alone is unlikely to provide all the needed

information for accurate error prediction but that a com-

bination of pre-processing and on-line (i.e., during stereo-

compilation) algorithms has the potential for detecting

problem regions and increasing the overall system throughput

rate.

Chapter 6 is concerned with the design and implemen-

tation of computer algorithms to assess the utility of the

image quality measures developed in previous sections in

terms of the degree to which image "quality" is indicative

of the correlation behavior. Here we look at the image

quality measures based on the Cramer-Rao bound and false

acquisition probabilities as well as a number of other image

features based on contrast measures such as variance and

contrast modulation which appear to have potential for pre-

dicting error prone imagery. Results indicate that a

measure based on the false acquisition probability appears

to nold the greatest promise for predicting correlation

behavior although, with few exceptions, tne quality meas-

ures are remarkably similar in detection performance.

One dimensional correlation simulations in the

presence of relief distortion indicate that extreme relief

can, indeed, be a source of correlation error. Although

some stereo-compilation systems correct for geometric
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distortions described by affine transformations, we show

that computational savings may be gained by performing these

corrections only under certain conditions which can be par-

tially specified in a pre-processing mode.

Finally, in Chapter 7, the implementation, both

optical and digital, of promising pre-processing algorithms

is considered. Also considered are image enhancement pro:

cedures which can be used to reduce the effects of noise on

correlation behavior. Initial experiments indicate that

these noise suppression operations can significantly improve

correlation accuracy.



CHAPTER 2

CORRELATION TECHNIQUES

Numerous correlation techniques, both analog and

digital, have been proposed for the purpose of image regi-

stration. None of these is equivalent to stereo-viewing as

accomplished by human observers. Owing to his adaptability,

the human observer is far superior. The interest in develop-

ing automatic systems, however, has led to a variety of com-

putational procedures. Some of these procedures have a

sound theoretical basis whereas others are at least partly

ad hoc. In this chapter, we present the theoretical frame-

work for some of the more common digital procedures and

briefly discuss the rational behind the development of the

ad hoc techniques.

Correlation Geometry and Nlotation

Let two images, S the search region and R the match

window, be defined as in Figure 2-1. S is an L x K array

of digital picture elements (pixelsy and R is an M x N

array such that M < L and N < K. It is assumed that enough

a-priori information is known about the search and match

windows so that L, K, M, and N may be selected with the

guarantee that, at registration, a complete sibimage is

20
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contained within the search area. In stereo-compilation

systems, there are two mechanisms for establishng such a

guarantee. In a "non-tracking" correlator, the search

limits can be set by a-priori knowledge of the maximum and

minimum elevation over the region of interest as indicated

in Figure 2-2. In a tracking correlator, however, the

search can be reduced by predicting the location of the

correlation peak based on previously computed parallax

g values and computing the correlation function at several

positions on either side of the predicted location. Because

of the increased throughput rate achievable by reduction in

search extent, the latter mode is commonly employed in

present stereo-compilers. As mentioned previously, however,

this mode has the disadvantage of being unable, in general,

to recover from a "lost" condition without aid from an oper-

a to r.

The various correlation procedures search over the

allowed range of reference points to find a point which in-

dicates a subimage that is most similar to the given window.

In some applications (e.g., stereo-compilation with epipolar

scanning), the search is one-dimensional (M = L in Figure

2-1). To simplify notation we will assume that the correla-

tion functions are one-dimensional. The extension to two-

dimensional searches is straighforward. Furthermore, we

will denote the match window R by defining r to be a vector

consisting of the raster scanned elements of R, that is

i ,i ,, , I III
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The various subimages of the search window will be denoted

in a similar manner by s ,k = 1,... ,T where the superscript

indicates the location of the subimage and T is the number

of allowed reference points (taps ).

In aeneral, one cannot expect any of the subimages

to be identical to the match window r. Assuming the

ideal image acquisition scenario described in Chapter 1, the

primary sources of the difference between r and the "correct"
subimage, sc a im-grain noise (or shot noise/photon

noise in a photoelectric sensor), scanning noise, and dis-

tortion due to terrain relief. Film-grain noise is a direct
consequence oF image acquisition, sensing and recording; it

is a random quantity injected into both images. Although

this type of noise is weakly signal dependent (Andrews and

Hunt 1977], it is common procedure to characterize its be-

havior by the zero mean Gaussian probability density func-

tion (pdf):

There is a correlator output associated with each reference
point or relative location k. The term "tap" historically
refers to the wire tap on a delay-line correlator.
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p d)- exp (2-I1

Y227
nn

where 2 is the noise variance. it is also assumed thatn

the noise process is spatially uncorrelated, with a uniform

"white") power spectrum. Scanning noise will also be

modelled as in (2-1).

The effects of terrain relief are not so easily

characterized. For the present, we assume that the effects

of relief are negligible. In Chapter 5, we discuss the con-

ditions under which this assumption is valid.

If we let g be the underlying image intensity or

density sequence obtained via the projection relationship

in (I-2 , then a model for the effects of film-grain noise

(and any other additive noise) is given by

r g + nr

C (2-2)
S g + n s

where n is the noise sequence contaminating the match win-

dow and n- is the sequence contaminating the correct sub-

image. :rom (2-2) it is easily seen that

r = s n - n s (2-3)

if we lump the noise terms together, i.e., replace

n - n by n¢ , then (2-3) becomes~r

r = sc n c (2-4)
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Before proceeding, we note that nc and sc are corre-

lated through Equation (2-2). Since we do not know which of
c k

the T subimages is s , each subimage s must be tested. In

the following section, it is shown that some of the more

common correlation procedures are maximum likelihood parallax

estimates.

Maximum Likelihood Correlation Procedures

If we consider r to be a signal obtained at the re-

ceiver end of a transmission channel, then the set of sub-

images ,sk , can be viewed as the set of possible transmitted

messages. Given r, we wish to determine which transmitted

ksignal sk , k = 1,...,T most closely resembles r. The maxi-

mum likelihood (ML) processor selects the signal which maxi-

kmizes the conditional pdf p(r~s'). As we will see, the form

of the processor depends on the assumptions made about the
k,

set of signals :s : as well as the properties of the "trans-

mission channel". :n order to generalize '2-2), we intro-

duce the parameters a and m in such a way that

r a ac g- + n rc

g+ mC + nC

The parameter a can be viewed as a scale factor in-

troduced to account for differences in image contrast and
M is a bias /ector modelling possible differences in mean

density leiel.. '.e will assume m consists of identical
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elements of value m. Rewriting (2-5) as in (2-3), we have

r a(s c- - (2-6)

The maximum likelihood problem can now be formulated

in terms of the T hypotheses:

HI  : r a 1 (s - m n + n

2 a2(s - 2 - n - r

(2-7)

H : r= aT(s - n + n
T - T - T I +T _r

Before proceeding with the determination of the ML processor,

we need to obtain appropriate expressions for a k and m k' To

determine rk, we denote by r. and s. the ith elements of the
k

vectors r and s respectively. Taking expectations with re-

spect to these elements gives
•k,

E~ri = ak( Esi - m) (2-8)

If we estimate the ensemble means by computing the

sample average over the appropriate region, then
-k

m s -- r (2-9ak

and '2-7) becomes

Hk " r - r = ak(s - k _n k  + nr (2-10)

To obtain a k we compute

2,, k -k k -k
-s-,)'(~s -n 'K4.E:nn (2-11)

kk k_ r
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where orthogonality eliminates the cross terms on the right
k

hand side. If the vectors, r, s , etcetera consist of N

elements, then the expectations in (2-11) can be estimated

by computing sample variances over appropriate regions, i.e.,

No 2 =a2 N 2 -2E (sk-s-k )n k,+ 1j 2 + ;4n2 (2-12)r k s .k n n

2 ~2 a nd 2where r , are sample variances and N is the

total number of elements in the match window. The remaining

expectations in (2-12) can be evaluated with the help of

(2-5), i.e.,

k 1ElsE~ nn}yE~'~ n IN (2
-( )-k ak k E-kn-k;N n 2-3

Thus (2-12) reduces to

0 2 a2  -2 2 + 2 (2-14)
r k 's n n

from which it follows that

_ 2 2
2 Ur n 1

ak 2 2(2-5)
s - n

For high quality stereo-pair imagery, it is usually
' 29 1 2 2

the case that r >> - and - >> n signal-to-noise

ratios of 30dB are typical). Thus,

2 (r - r "(r T)
-a r (2-16)

k 7 2  (s k -- -k (s k 1-k
s - (S -
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The problen of determiningj p(r k ) is complicated by

the fact that the noise in '2-10) is signal dependent. Useful
k k

results are obtained, however, by assuming that s and n are

statistically independent so we proceed along this path for

the present. Under this assumption, (2-10) is rew.;ritten as

r- ak~sk_ _ -k) + nk 12-17)
h r- .r a -n2-1

where

t onl - a k n k (2-18)

Since the only random quantity in (2-17) is n (r and

are known samples of a randnm process), then it follows that

p(r~is k  - -7 exp[- Z(r-r-a k(sk-s ))C (r--ak(s-s<)J
N~s - --- k n k

(27)2 NTnk (2-19)

where Cn = 2 is the noise covariance matrix (I identityn nk 2 2

matrix; and from (2-18), 2 = ( + a2 n The selection

of the hypothesis, H., to maximize (2-19) is known )[Whalen

1971] , LVan Trees 1968, to be the hypothesis which maximizes

the quantity

ck = 2a (r - r)- sk _ 2- )  k - 12 0
k -k

Here (r - r) (s k s ) is simply the cross-covariance of r
with s< and (k -k k -k) is the energy of subirage s

if we make the a-priori assumption that a k = 1 for all k, then

the M'L processor computes the quantity

- k --J k k
ck 2(r - r) s - s ) - ( - s ) (s ) 2-21)

k1
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and selects t,e nypoc es is which a;i: z c Since
L K

r r) '(r r, is independent of the h ypothesis ,e coulo

just as w e co:mipute

->k -- k ' k -C = (r - r)'(r - r) - 21,r r r ) \s - s / + (s - sk) : - s )

=[(r- r (s _s)I r _ -r)-_s-k) (2-22)

and se]ect tne hypot hesis hk to ;Pain IM ze Ck Thus, theI k k '

ass Amot ion ,C.a k 1 leads to the "sma les t sum of sqoared

differences" processor which selects the hypothesis which

:rcvi-es the best least-squares fit to r.

.f the assumption is also made that the subimage energy

is irdeoerdent of position (or varies slowly with position)

tnen the %IL processor reduces to the simple covariance func-

ti on

c (r r) " s k  - k2-23= (r - - s k -(2-23)

,or tne most genera: case, a. , 1 V k. Substitutin,

into '2-23 cives

c, _ -S r- r) 4 r- F)F:C" = - )r - r) Ir - r)

(2-24)
Eliminathng .uanti ha' are independent of t-ne ny-

pothesis leais to

r - r) ,s s

1,2-25)

-, K S_

As -e'ore, we :cjl J s3 S- N e Comoute
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(r r ) s s

k = 1 2-26)

r - r) (r r)][(5 s ksk - k s s-k ) 2

which is the well known normalized covariance function which

selects the hypothes is which maxilizes the correlation coef-

ficient between sk and r.

Because of the computational simplicity of (2-23),

simple covariance has become the workhorse of present day

stereo-compilation equipment. As we will see later, however,

viclations of the assumptions leading to (2-23) are cause for

concern. Normalized covariance is commonly employed in appli-

cations having less demanding requirements on throughput

rate although it is used by the recently developed heterodyne

optical correlator [Balasubramanian 19761. :n the following

section, the image matching problem i's formulated in a slightly

different manner and the corresponding >1L processor is subse-

quently di ffert.

Generalized Correlation

Since s can be obtained from skl simply by a one pixel

shift in subimage position, the matching problem can be re-

posed as

R(i,j) = S(i + 0 ,j+D ) rect(i + N 2 ,- 2y - ' ; 2-2,,)

wnere C and D are the relative shifts between tne matcn
x y

windows q and tne correct subimage of S, NH ij) is the signal
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dependent noise as before, and

Fl . M :I ,'i <_j <

rect( ' ) (2-28)
0 otherwise

With this formulation, the ML processor selects the

parae-ters and D which maximize p(RID,Dy). As we shall
x y Irx y

see, the ,!L estimator can be realized as a pair of image pre-

filters followed by a cross-correlation as shown in Figure

2-3. A -iriety of "generalized correlation" techniques can

be implemented in this manner with the choice of H1  and H2

based on the optimization of certain performance criteria.

S .,.' ,v; H 2(u, I u,v where u and v are the discrete

norizontal and vertical spatial frequency variables, then the

est.i-a'e _ , is tetermined by the cross-covariance function

u Zy

G - u- , 1-29S ,. : -. l - GsR(u v)W~~ 2N2M
u=O v=O

Mhere

SIN -N (2-30)

Equation '2-2D) is simply the inverse discrete Fourier trans-

form of the estimated cross-power spectrum GSR and the processor

is the two-dimensional analog of (2-23). When S and R are

filtered, however, the cross-power spectrum between the fil-

tered outputs is given by

GAB(Uv) = Hl(uv)H2(uv)GSR uv) (2-31)

and the generalized correlation between S and R is
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I N-1 M-1Im ._ (k u V : .u v G u V wk w v

AB NM u=0 v=O SR )2-32)

where

.,(u,v) =  HI(u,v)H 2 (u,v) (2-33)

The ML estimator for D and D has been derived by Knappx y

and Carter [1976] in the context of determining time delay be-

tween signals received at two spatially separated sensors in

the presence of uncorrelated noise. To avoid the problem of

signal dependent noise encountered previously, Knapp and Carter

compute the pdf p(X'Q) where

X(uv) (2-34)

S(u v)j F:S i,j)'

and Q is the power spectral density matrix

SRR(k,4 GRs(k,2i

Qkk,z) sk 5  ;(2-35)

The assumption is made that the elements of :(,k,z) are un-

correlated aussian 'thus statistically independent) random

variables. This assumption requires that >I and N in Figure

2-1 are large with respect Dx and D (this is not generallyx y

the case in stereo-compilation systems). The result, extended

to two dimension, is given by

cML l N-1 M-1luk

CA(k, 1  : ( u v ) GS ( u  I k  (2-36)
u:O v=O
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where

Iuv SR(u 'v) .2
M L ( u 'v )  - 2 , (2 -3 7)

JGSR(u,v); [I-sR(U,V)

and "SR is the coherence function

{sRSR(u,v) (2-38)

,'/GSS(u,v) G RRu,v)

Equation (2-36) can be interpreted as a phase estimator

given by

GsR (u ,v)
expjju,v)] = (2-39)

l SR(u,v),

multiplied by a weighting function which weights the phase

according to the strength of the coherence. To implement such

a processor, Equations (2-38), (2-37), and (2-36) need to be

computed for each match window location. This procedure is

thus computationally prohibitive for the application at hand.

The correlation methods characterized by Figure 2-3 are

all generalizations of (2-23). Normalized covariance can also

be generalized in a similar manner, although the analytic de-

velooment of the optimal processors is, in general, impossible.

Pratt (19741 describes an image pre-processing procedure which

simply "whitens" tne images before performing the normalized

covariance operation. A major consideration with any of these

generalized techniques is the increase in computational com-

plexity. To alleviate the computational load, a number of

ad hoc correlation techniques have been proposed.
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Ad Hoc Correlation Techniques

The techniques described below are included here pri-

marily for completeness. They are not analyzed further.

Polarity Correlation. The input waveforms are quantized

to two levels, then correlated as usual. The method is less

reliable than covariance, particularly for small data sets,

although it is far less demanding computationally.

Minimization of the Sum of Absolute Differences. With

this method, averages are removed as in covariance, then the

absolute values of the differences between the match window

and subimage are summed. The position at which the sum is a

minimum is considered to be the position of maximum correla-

tion. This method is also inferior to covariance [Helava 19781

but is less demanding computationally and can produce useful

results as In the following procedure.

Sequential Similarity Detection. Sequential similarity

detection algorithms (SSDA's) are based on the fact that of

the (L - ' I 1)(K - N + 1) reference positions shown in ig-

ure 2-1, relatively few are near tne correlation peak "tnis

depenGs on the a-oriori knowledge concerning tne predictec

location) anc tnerefore only relatively few require high

accuracy calculat oiis. Furthermore, for a grossly mismatched

windowing pair it may not be necessary to test all MN data

pairs oefore rejectin; the suoimage as a possible match

Barnea Silverman 1.72'. Threshold algorithms are employed
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in which an error sequence is generated using the previously

described technique. if the accumulated error exceeds a

threshold (fixed or variable) then that particular search

window is rejected. Those positions which pass the threshold

test are subjected to closer scrutiny, in some cases employing

more reliable correlation algorithms to make final decisions.

Hierarchical Similarity Detection. A hierarchical ap-

proach which employs the SSDA technique just described has

been developed by Wong and Hall [i978] in which a sequence of

images is created, each of which is a filtered, subsampled

version of the previous one. An SSDA is then employed on the

filtered images to locate probable correlation peaks. Higher

resolution images are employed at each stage to improve cor-

relation reliability in the vicinity of the probable correla-

tion peaks and the process continues until only one peak re-

mains. This method is similar in concept to the multiband

analog correlation technique which separates the image signal

into several (usually two) bands. The smoothed imagery im-

proves the pull in" range due to the broad correlation

function) and the high frequency imagery provides the requirec

correlation resolution [Thompson 19661.

The variety of correlation techniques makes it aiffi-

cult to develop image quality measures which will reliably

predict correlator performance for all the techniques. Since

some methods are considerably more accurate than others, we
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can only endeavor to tailor the ima~e quality features to the

particular correlation procedure chosen. :n order to make

the problem tractable, we dill restrict our attention to a

small number of techniques, in particular, covariance (2-23),

normalized covariance (2-25) or (2-26), and least-squares

(2-21 ) . In the following section, the accuracy of these

correlation schemes is assessed by computer simulation. The

goal of the remaininy chapters, then, will be to develop image

quality measures which will predict the behavior of these

models.

Correlation Processor Comoarisons

In order to obtain valid comparisons of the image

correlation techniques, it is necessary to have access to

stereo-pair imagery for which the parallax values associated

with each image point are known precisely, or equivalently,
the corresponding elevation data is known precisely. t is

also desirable to be able to control the image noise content

as well as its spatial spectral characteristics (both int-n-

sity and elevation). In order to obtain the la-ter capabiiity,

it is necessary to generate purely simulated imagery. While

we have taken this approach in part of the experimental results

to be presented in Chapter 6, the imagery so generated lacks

realism. The disadvantages of real imagery, howeve', are

that the required parallax precision is not readily available
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Ain d ow S z e: a x 3, 5 x 3,
(c 23 x



I'm r' ..

a~' 7~ x~ 3, (b 5

-A.,

~Figure 23 Correcd PaaaxN rallaxd
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Sure2-9. E r r or ia ps -Cov a rian ce. M a c, indr;-
S iz e: ( a) 7 x 3, (b 15 x 3,

()23 x 3

bW..

~iu~2-f'l. Error MAa's-Least Squares.
-Ia cn r'nd >:a c e , 7

(~) 'IS ~ 22 3 ;
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parai a<. i c ' a rin~u ar-.t a or;, ner 'it --rn t ,o arto

matris. riTheresoa ire t,.o exps-e parall,-, error • : one.a pixel

So ocu risci a faoto. c aort'c ros>aince the caore atin o' ne-tir9 {. erors.; .Also note :.oev:

".4

pnea oae !s~ har.onr erors tat ocu r-O uin l"t~:easts areoth: r

t is noo no ao oen p to ornp e,, rr ors a lnoains
c cu r n s;c h a sit aati n Th -11a o * 4 , e r r"s n

a... r -0 nof , r ]'C w er

pha re,, , e r e ro0r S that oc c ur uis ing least-squares a nd-

nc r7 lI ZeC i'a riac e als o te nc to occu r at nhe se 'Io Cat io n s

since one eaaK of tne correIation function is, in effect, sor-

n , 1- -- ro nb l JaSo e - e ou4 e s rocr e ad '_e z e e t C; -pr es j o r r 9aa e c e f th e e ors ould tentne

inter 3 s.: -e ruire4 to create he synthetic
'mc 'v/ - -e ..... fr:, relatively small ,they

aou: 5o ri ne'- increase uh
-  probabil ity~ c a "lost'

cond r "n r rzi r, rrelator. or this reason, these

re ions 3 ..... .e J n s3 c ue n n lysi s a S einc 'no-error'

r e ons .

n a I, e note t"e loss in correla tor resolution wit'

in rcr a r ,'_ - , er. - s . the irreaular contours in

r e a s o... ... r c -i u ,ein h 3 s ;er co

"ecu t fCO-, ': t 'a .,ne c3.n 4e x ara . a: corespeoz
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to the mean elevation vi ewed through th e match a i ndow. ThiS

effect is most noticeable in re 2ion 3  ith steeP terrain 'Ioa e .

The correlation exoeri :i, : ,c rn weated .ito noise

contaminated ima cry Signa 1 ind, pe rdE a'ditive Gauss n

white noise was introduced into each ii9 e of the stereo-. L r

resul ing in an ov era ll signal-to-noise r io of 2C"B. T

resul ting correlation paral lax results are shown in -igures

2-12, 2-13, and 2-14. ', hile toe co ariance parallax a;:atc eS

aCear to be almost unchIcanged (erhaps because h e inFerior

initial behavior), t-,e degrada ti on of performance for the

nor:iailzed covariance and least squares processors is quite

clearly oDservable. This chapter :s concluoed v-th a compar-

ison of the computation complexity of each of these algorithms.

Comparison of ComoutationaI Ef-ic4encv

In order to properly co;moare the correlation algc-

ri tms, it is necessary to com,,pare the computat ion compl ex : '

as well as occ.racy scc a trae-off generally results e-

.tweet tqese cnaracterisiczs. Since many of the computations

can be one in Para l e ,with special purpose hardare it is

diit I t como.re 3 lor thms in terms o¢ total comouta-

tion time. However, a commelon m:ieasure of comcuzationa" com-

plexity is the total numzer of real ads and multiplies re-

quirec cr a artic lr opera,;;n. 7his is the apprcach

taKen nere. Since -iee Ias s qu.,res rocedure in 2-2, 2

rE re--s ,te ao-p s s :rcoedure, one to com0 - te the
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Figu- Erro Map- No m l z d '. Ila c

Match indow ize: a 7 x 3

bS 1 2
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vV w "t'~3

4 4%

Figure 2-12. Ccmputed Parallax-Covariance,
S NR =23 d8B. Matcn 4intow 54 e:
(a) 7 x 3, b) 15 x 3 , ( 23 x 3
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,aryin e i/at l . .;ust return to r, e ,; ouSi ri an -

rop:ri ae Dounc since C s ' n (3-, is nenner; un tonr s

relie distortion.

The Cramer- -ao i nequa I i ty specifies 1 Iow er bou nd or,

the perat la error variance but it does not guaranee that

this bouno can actually be reacned or even closely approxi-

mated. For this reason, it bcco-es i,.oportant to study

physiclly realiz3ble correlation processors a n to compare

Sneir performance to the lower bound.

Generalized Correlation Local -'ror Voriance

The ceneralized correlaticn processors described in

Tnapter 2 allow an analytical approach to error variance de-

ter-, n aton. Let

C f - 2f 3
c(*. - ; \f)Gr (f) eJ2 --df_ (3-23,

r s

oe tre ere-e; n;ensional enerl iZe d correla'ion function a na-

10 3o us 2 2 e a vera e out pit c,- of toe -eneralicc

orocecsZs r 4- snown in Figure 3-1 along qith a few sact)e cross-

co r re -rrni'ns. 4;thout loss of ;enerai' y, .Ie ass.'-A

. u a output, c s only a n aop ox< J t cn -n

ue 7. t e s of noise and the fact nat in a phi s-

icea Z a s e einteqra on e i i e .

C7 40

n?
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iKO d<(-4
-'0

the value of for ,.hicn r 0rovi 5" ae ' Cstate,d<

4, of the tr.d v o oa I Cf excursicnu of z, are entirely

confined t t: e ne.a segen r a S 'r, own n 2-ure

th-, then the parallax error variance is viven by

2

2 U z
e 12 3, 2j

Knaop ,na noarzor 976x, ex ,edin a result from ,IacDonald

and Scnultheiss [1 96 state that

= r SS r ' '

:2., -_ _ __ __ _o_ _ _

e - ' - := [ 2

S ,f) G rsdf)

(3-26

wnere f is tne pre-fi 1 r :ransfer function of tre saner-

ali z 2 o rred.ator ,erine in i-] .

For tne :iiaxi:um 1 ike iI ooc oroesuor, .f. is viven

y (Z- ,:, c7 e pe -e . - re fcr oe con'inuous case

3., ,
0*-t , ::. ' - ; and 'r2] it'O t3 2. , ie na've



Figure 3-1. Creac .tu aeD7

i~ure 3-2, e r i- -D
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2 ,. : 2 1!r g
E (, 2

D (2 F) 2 _ -_(_ d f
I '( f) 2

'Ae note that t is is precisely the Cra mer- ao lower bound

given in (3-5). There is a temptation at this oic nt to con-

cIude that the 1L processor defined by (3-27) is a minimlure

variance ;.roccS sor. Before reach ing such a conclusion, how-

ever, we must access the validity of the assumption leading

to (3-5) and (3-27). Three assumptions are of particular

concern. 5irst, the assumpti-c. that 3 is large with respect

to one correlation , idt is generally not valid in stereo-

compilation systems. The effect of a small match window is

to introduce random fluctuations into the correlation process

eiich are not accounted for in (2-36) [Helava 1978. Secondly,

the analysis wnicn leads to ,3-26) assumes no false acquisi-

tion errors. For the present, suffice it to say that alse

acouisi -icns cause an increase in - . Finally, all of tne
e

Orecedin4 analisis assu-ies wide-sense stationarit:/ cf both

im.a~ ar: noise orocesses. Thus whie )3-23) may Drovi-e an

acc:ra-e -: ;jre o system per~c-mance in ima.ge regi straion

Drs~~ C v ro 'i ng arge section, os i :mazery, we ca-nnot e-

Lec" processDr to aheIhe the acracy s:ecified

tno "c e' -:u :n in ,3-5).

icr toe sin'ole covariance estimator, .f' , and

.r --. : oriance error variance, 2 is ven
e



,(2 ) 2[Grr(f)3 Kf() - 3 f)! 2 ~2srr2s rs 2

(2 G r , f df;

WJi th sub sti u :ion s from (2-7 , (3-29, ccowes
e 2G2

(2rf)2 (1 + 2  2
1 ()Gn

-e 2

For the conditions of (3-33, this again reduces t:

2 2
(3-11) aI tn o~, 'in general L since 2 is the vari-

ance of tre "minimum variance estimator,-. Since for high

si c al-to- n se ratios, the tneoreticaI accuracy of the co-

variance processcr converges to the Cramer-'Rac bound, the

Cramer-Uao tound itself 4s a reasonable candida:e for an

image qu.lit,' measure.

Speci fically, we will consider (2-8) as an image
eature. Since G (f) is anerally unava

- 99\, a - erl uaaalwems

cooute _. <3 ,,or S (f) and estimate G (f" so that '3-7'ssr n

can -e ue ,: .o obtain

S (f) S= < 3, - S (f) ' 3-2i'
gg n

Cn o ~aocity can be esioec =s n. ) "-1-5 Exoe r en-

results ,see ShaDter 6 ) s now t a the mer- a o Treas s 'e

a pcterI;a susefuj pre-p'-ocess ng a-rtnm. As we sn a

see, o,4e/er. otner features are aIsc Jsefu . n -

i :o M setion, we consider t ae faIse -cquistion p'rtacK

as a :css Te ua i y measure. 3efore roceei , now- oe
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we no t ;" , :, re shol1 t ti e, 7 any,

difr. . . s osor e 'n ba (-26) and

(2-27 ond :i-.,l, cc i . C ,  eferr ng to Figures 2 -, 2-10,

and 2-II, we see tLt h, -2a(t-squa res and normalized coY r-

iance r sul t in a e -T e -square error. Thus, covariance

is e nitely nOct !i u: v.r ance estimator. _1 s discussec

in ,hop.c" 4, the violati on of local image stationarity "s
the o:ri:ory reason for this discrepancy.

Correlation False Acquisition

As described in Chapter 1, a false acquisition occurs

when tre peak of toe correlation function is associated with

an incorrect lobe 'Fiiure i-1c). For an arbitrar' correla-

tion processor . ,, the probabilitj that sucn a peak occurs

at l.cation - Cis exPressed as

a> ) ProD it$: > c(3) .2-32)

-re tota" Calse ' prPai, it , pT, depends on -he joint

:if of tne :orreator ootpot locations and the statis-ical

deoendence oetaeen correlator output iocatiens mkes -

oss lDe :o ootain _ in cosed form exceot nder toe 220]-

ions of si pi--yin: assu, TDions ,,hic will be t -z i*

Coqanter c1 deDencs or, the orti ZJ or core a-

tior, prcoess r, te o c, in oZserv 3tions are aopr:n :

o ovar ance c uat ,n 2-: , least- s q are

, - 2 or 2-_2 anv aor'lal .or

:ovar-ie nu t;;s -> or -2 al

require 'p~t'cn of tne cova-<iance.
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2. Under th assuwmption o tcItioIari 'y -e

ener--y t e r,_: are_ cons ta k s a r c r on .o wy

with subi aje loc ation. Tius ech co tre

processors is approxi;ate 1 1 FircpartioraI

to covariice.

3. The mean value of he csv>ri ,nce f-nctiooi

a: the correct pea< is directly related

to e h totaI energy of the match window.

. Tihe fluctua:ion of the correlation func-

tions far from the seak Je end s n e

noise content n tne par icul ar re ion

as well as the spatial -requenc! content

of the ima e patterns tnemselves.

A4pying these observations to the qualitative cehavior c

Pf -- , f ol cws - .. hat we should ex ect an increase in

false acJ Jon frequency in regions of low sional-to-

noise r!:-o. f we assu:e t a: the functions r,( an& s,x

are er's-"en, -,en tcc c7 iri.ance rooessor K .given t-

D/-2
C( )r =  (x x x 3; < 3 -3 3

assji'n: Firiner tont c ) ana :IC, are Sas an Aistrinjtei

r o Da I oe-s .i /-

D102

C - r IS r S
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3-36)

wnere

r -I
,Sau~ x) ' __l__ ~ o I x I3-37)

7ne aer va:2 n of ;3-36) is given i Appendix.' .

:f 7,(0) =:(- and2 (- )0 o then since

2"s-'] .:" 'e n-3'e"r s " . '

2
v--.9

7 rc c - GausVicu Saus',cv 3-3

7 n s one -- Is a Ja ' i cn o aoi b .y de-endts cn he r a-i

.. . ..... s' nal ene''.. . a I -r : / s?
cr, r e3or tus,: saaca t ." 7 atn

na s cen sno'an ¢ cre,,, s I on a- oe 7rosaai t zne r

...... 'jrlCO1 ns of : e cz3 re lator nao .3. :u s are

-a/.e~ -a5-3. . - n t'is ass's '5.-On Decomes 'e-s vali4

aP oe : r- a ts D a . e -ant - y in 3-3 ' can
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Webber and Ce ashm t 1 7  V t , cr Ue correlator pcrfor-

mance for GaUssin rrc S: ,:r .

In Chapt w, Mc. ,i , :'-t -werns or

additive r c se as we as self na iso' en 'eo"mcnine ai se

which are error soures be c.cuec i , a- f11swino1

cnap , r.



CHP E

THE r VA ,P C ' , ' ,

The covariar, ce pr c eS GC inec L y - t1 r

is the m-i o s c , i nn 'I c '-

in i t e _ ,p r -Ist. t s a so c , -

cv crr-_la in e c c, re r in rar n n Sysrr S-

mate tarez ran e by eaSurin s raI rounu 4 r v /2

in the c. onte.,t of t hese ap lica 4ion , the corre at- cn proces-

sor is also known to be the "'atched fi:er' i hich max'-mizes

tne e ocessor out ut sina,-to -noise ra io at the peak of the

correla: on f.nct on. Ior the anal sis to folIow, it is mo e

convenient to epress the covariance fnction i,-. s7mmation

notation - otner than toe vector inner product notation. 4e

ehus ccnsiser toe discrete covarcence i fc 'c qsti:e

:{k" = -.s.----,--.,---1
i= k i i 1 =] ,.

, sere - e n s n a s e - :ens -,. V CCSvn , , D

a-se ne-c-ensone " so anes. s to -.,o --

-E, c

S us i I r. I c f r e. r 3

/s 7rccD r'
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2 Self noise r s lti : fros j', I ,ct t a t

each correlation fnction i: a smplk

from a random proces 41 :r aoe wcha t.

statistical fl I C to a tions

3) a'lchn-ne noise reso sing fromTi c ,mpu t er

truncation or rcund-off jue to 1IJ i d

macn n e re is ter 1-n,-: s

(4 inu:u data nrn-so ationari/ hic, vio-

lates the assum: poior leadin, to co-

variance be-ing equivalent to the YL

processor.

:n a digitaL ss ,m, the correlation functions are

a-Y e a: 2L 1 i evenly spac d locations. :t will be

ass,-e; onat an error in the cross-correlation computation

occurs if a value of k in (a- ) other than zero corresponds

n .x um vlue of e a enotinc the pr oab l t,

of :rro- D/ e and the rooatil hy tna the peak occurs a--

, . r ,a'e th a

P = 1 - 2 '0 ,e 'I

a ,

- ,2

=--3

ee .i ss e --ae n se. iu ean- rcu e--error . t t i: a S-

su:: j n o -7 i; nao one coarrez:o eak "oct on is a:

.e... tie searc ! -ecio . f .. is is n C e caSe

*<e s t n -, _r -:o siroly e 3te.and a re;_ -.n-

tiin itsa : .ir resil: in a non-zerI 7ean :orn e.li on error
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[Mostafavi and Smith 1978 . n general, the computation

of P involves a 2L + 1-fold integration over the joint pdfm

of the correlator tap outputs. -or even the smallest values

of L, this is computatLnally prohibitive. Because of the

correlation between tap outputs, the oniy situations that

can be handled analytically occur when the input data con-

sists of eitner very smooth iowpass signals or wide-bandwidtn

signals approaching white noise. Tn the former case, we can

assume that the tap outputs are so highly correlated that

the self noise is negligible and in the latter, we assume

the tap outputs are statistically independent. Wernecke

'197": presents an analysis of multitap correlator self-

noise for analog signals in which the tap covariances are

accounted for by Qerforming a least-squares parabolic fit

to the avera.-e correlator output in the vicinity of tne cor-

relation peak. The results obtained will be presented in

the sections to follow. They do not differ substantially,

however, from tne results associated with the Cramer-lao

lower tount onicn, we recall, is related to local regisora-

tion error and neglects false acquisition errors.
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Sensor 'oise

Let each 1 acne be corrupted by aditive zero-rea n

Gaussian uncorrelated noise. The covariance ca4culstion in

the presence of such noise becomes

N

c(k) + (k (gi + n.)

(4-4)
(g - - - (g -r n.)

-= g i i+k i

where c is an estiimate of the true Jiscrete covariance func-

tion

N 1

irk1 hiii

anc £ an -- are s atistically independent white noise

sequences. he computational error due to the additive nois,

is Qive by

IN 1 N .1
e ,' = ck], - c~ = - i - - 3 .

c -- Ii=i V =

1 7

i--l=1 i i l i= l i=

-4- .- - -

-ince ,.ne noise sequences are nccrre~a et and E e 'k, ]

e c ' c c

+, k .1 . i k
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2 2 F~ l )2
e(k) e2(K = E 1 2c

+ (1 *.2

22
+ E( i i ) (4-7

Taking expectations with respect to the noise terms

it is straichtforward to show that

2 W ,. 2 2 1 2
fl1 N' 1 ,g

+ (7 g2 1 7 2 2
i+k - N (z gi ) + N '2 ]

(4-8)

If we also assume stationarity of the input process

as we , ExPec:aticns in (--7) can also be taken with respect

to the process c resulting in

2- 2 2 22 (k) - ;2 [2: 2 (4-9)e. n g n

where we let

g2 1 2(- 2 -
- ~ i )  N 2g (4-10

and

2 - f. ,2 N 2 4-l

Since tne error in (1-6) usually involves 3 iar-e

numzer o z erms, i ss reasoracIe to assu:jre tn t e di s-r :: -

tion of e is $aussian.



76

Self Noise

If the image input signals consisted solely of the

desired signals (i.e., gi and gi + k )  there would still be

statistical fluctuations at the correlator output du;e to

the random nature of the desired signals. These fluctuations

are known as correlator "self-noise".

Taking expectations in (4-1),

I N 'N

E(c(k)) N R (k) - m ( + k - i) (4-12rs -Nil rs ~\-2i=l j=l r

where r is the cross-correlation function
rS

R (k) = E rs + k: (4-13)

and stationarity is assumed. The cross-correlation between

correlator taps is given by

E(c(k)c(L)) = EI(r si+k - I zr.is k )(Eris -1 r _si ikN 1 +k)(ir s+ IN zr z.~9

N N
- Z E(ris i+kr s +

i=i 1 ik

S
7 E(rs rs(4-14

2= jl rnlnn+k 3n+U 4-4
N i 1 j= m=l n=l

[E(ris ri= ]  j l m- i+kri n+

+ E(ris .+kr.s+ ,)

in general, the fourth order moments in (4-14, canno-

be simplified. However, if we assume that the error incurred

by estimating the means in (4-I) is negligible then the co-

variance fjnction can be ,iritten as
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c (k) r is i k (-15)

where r a nd s are zero-mean secuence1 "-Ii t h tnqi s a S S J-.1Z

tion, only the first term', in (4-114) remnains.

If we then emplo," the im1age model

1i +

the n

E(c(k)c(i) ) - E~ggk
i=l j=l 3qg~ 3l+(

N N

+ E )
(431

N IN
- E E(gigi~kg9,,Z

+ N 2 C (k!<-az + 4i I-
n 9

(4- 15
+ N 2 2

n f (k-

+ 2,:2 (N - -') C 1 -~)
n K-. f.<

MNnere k)is the Kronecker delta3 function

lk 0

k) = 4-1i)

O,otherwise
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Thus the cross-covarince between correlator taps 4s

given by

K (k,e) - E(c k c( )) -E ( c (k E (c ))
C

N N

2i 1 E1gii+k jgjk )i l j=lI

+ ;2 3 11 k- )C ( k- (4 20
+ n (4 2

2 2 2 Cn n g g g

Since g is zero-mean, the fourth order moment in (4-20) can

be simplified if we assume the process generating g is Gaus-

sian. in this case [Whalen 1971, p.9 7 ,,

E(gigi+kgjg9+k) C (k)Cg(C) C (i-j)Cg(ik-j-)

+ C (j+C-i)C (ik-j) (4-21)
9 g

and (4-20) becomes

N N
K (k,C) = -(C (i-j)C (i-j+k- )+ C ,J-r-i)C (i+k-j)

Ifn n n 9 eot h aiac fteL tpn fl k9

~fk=Cwe o bt ain t ne variance of the t ta p
2~, ~N N

.ic- LC) :(C2(i-j) + C Ij i ), i -

+ N 2 2 22 -2  n (")4-2-;

Niote iat :he s :erm in (4-23) is the contribution to tne

tao iarlanze Jue to tne additive sensor noise. Thus the

ad: tiie noise and -,he self-noise of the desired signal are

uncorre1ated. If o is a white process then 4,4-22 becooes
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4K ( k,,), k- )2 2- ? d -

C 9 '2 n

ano the individual t3P varianceo aru -:',,e 

2 2 2 22(L)~~~ ~~ - 2( + : : -5
c g nQ

The contribution of selIf-noise to the reradaticn of

correlation accuracy is, in general, difficult to deter"ine

due to the correlation between correlator tap -utpus c v-n

bv ("-22). As mentioned earlier, Wernecke [19781 presents

an analysis in which the tap covariances are accounted for by

performing a least-squares parabolic fit to tie avaraco7

correlator output in the vicinity of the correlation peak.

, ith the assuqTptions that:

(1) The correlator taps are centered on the

correct peak location,

(2) The variance of the correlation function

curvature is negligibly small, and

(3) The correct correlation lobe is acquired,

,4ernecke concludes that the parallax error variance is

civen by

L L
2 i j K (i,j)

- c
e 4 4 ,.42 2 2 (-6

(2 ) -gr (L+1)(2L+I L L;0

w.here 3 is d-2fired in (3-14) and the total number of corre-

lator taps is NLl. Note that assumption (3) above ignores

false acquisition errors. if toe correlator tap outouts ire

statistically noeoendent then (4-25) becones
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L 2 2
6 i 2(i

2 i=- . .- 27=e 4 4 (NB 2 2[(L+I),"2L+I)LI

Comparing this result with (4-3) we see that under the above

assumptions,

3 2 ( Z
c 44Pc 4- 2 2 ( 2

( 2 )4 (NB2 [ (L+l)(12L+l )LI

The fact that _2 in (4-27) is inversely proportionai

e

to L0  is somewhat misleading since the addition of correiator
2

taps reduces 2 only as long as the additional correlatore

taDs imcrove the parabolic curve fitting technique. For

severely bandlimiced signals resulting in broad correlation

functions, such a result may be appropriate. However, in the

case of severely bandlimited signals, it is highly unlikely

chat tie correlator taps are statistically independent. To

avoid tnese problems, one must use (4-25) and constrain L

to a reasonably small value. The computation o ( 4-26, on

match ,incow size subsections is cumbersome due to the cal-

culation of the covariance matrix Kc" Equation .,4-26) is

thus no- ell suited to be used as an image quality measure

or pre-processor algorithm.



11a ch in e No is e

Figure 4-, show-- a block dian jr am of thc- co rput.1ato n

of the covir-13nce finction as performed by the AS-ll13-,(

stereo-com piler. nhe com:,putation of c k isuject to errors

due to truncation or round-off -in the limited precision comn-

Duter. The magnitude of the errors i1ncurred depend onte

nu.-bier -1F tinary digits (bits) used to represent the input

data, the number of bits used in the arithmetic operations

and tn'e type of arithmetic employed. MIost o'-esent stereo-

compilers employ fixed-point arithmetic with 3 bit precision.

Accuracy in fixed po-int correlators suffers from-, the need to

scale -.re 'inputi data in such a way as to avoid register over-

flow in the accimulators. 'Ai th continuing improvements in

microprocessor and minicomputer technology, we wilsee the

advent of, 16 bit stereo-compilers In the very near future.

o .t in c i nt o)r o ces s ors e 'Ii-1i natLe t-he need for prescain g

and >cDr-.ve overall system Precision at thne expense of in-

creasie-d sys'em7 comop]ex ity and cost' and dec reased '-,hroug hpu t

rates:. .evelo~cments 4n the digital processinj of radar anid

sonar si ,na is , however , have l ed to imnl eme.t'at-i ons of hnvbri i

f .a ti n c p o41n t processors chio are based on the i dea tna:

tn e e pnntr ce n cs to g rcw onIy i n tnhe p o si ti e e: rct

particularly near --ne peak of th.e covariance function. 7 )Is

data format iS easl imSlm 1e nteo in ha rdwa re a nd 7,as Der -

formed s~tisfacori', Toenim 13 p.2T2 4r.. the r3acar

s ec no
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.n this section, an analysis of both fixed-n oint and

floatinoc-point covariance processors is presented and e.xpres-

sions for t., contribution to correlator output noise die o

finite register lengths are derived. We will consider toe

correct computatior to be

N 1 Nl N

C k rs -- r. s. (4-2 9k i i-k IN. i
il c1

with t'oe actual computed function given by

Ck r ris i+k + er) - ( ri + e 2 )( Si+k + e 34

(4-30)

where el, e2 , and e are the resulting accumulator output
L 3

errors and e 4  is the result of division by ,I and subtraction.

It will be assumed -hat the distributions of e 2 and e 3 are

identica'-

Fixed Doint Processinc

,or fixed-point arithmetic, one usually cons-.- -:

re-is'er to te a 7ixed-Dolnt fraction. n this wa/ -' -c-

duct of two numbers remains a fraction hich -,,ust be t un-

catec or rounded off to remain within the available rester

length < o ci-s. The sim ol two numbers, nowever, coes not

reoui re --runcation althou,,n it can produce ai overflow :on."-

tion, i.e., the sum is no longer a fraction. T is overflo,,

conci ion o'coses J c:)n tr i nt on the dynami range of the

correbator output .nicn, in turn, requires scaling of the

input 4,3 . '4ore sseci ic3lly, if wie assume toat



< r

0 <_ S 'i +
-- i+k -.

for all values of i and k, then it is necessar! 'La'

N 1 ia-k

r <

1 k

i~k

where the prime notation denotes pre-scaled quanitis.

Inis condition can be achieved by computing

N r's ,I r i  N sC i N i i =  +

4 e comouted covariance function is thus given b'

N r s . :

i =l

r. S~
i k i l

r i'

, nere r - eo esencS he ul on ica ici n rounc-c F errors a
- , -• , ~c - r ,tesen- -e errors induced by ne re .

tio n in sr -ic;5 n c3used -/ c 'iis Dn D ' The value o

is commo c, c sei :o be - Oc'.er of 2, say C 5 s SO

S i v s o n bL ' .; , v , / e s s n 0t n .e .c a t a b v -

r toe i ntut an _- e ac jmul .or. :f N is i cr e n ae C.
precision can ze sicnificat. .n Fact, if !N 2 Onen



DI I : c i a v o...

division r - omoie , 1 imin'tos the irit s. rh-

Droble:'. Co n nem a'voite to C-.:>p :..: eu V/
1  

,mqr< ... r2 "

C n i r
N i. .= iN

'1r risi r. r.

q n, cq r

RN N 1 EN. -

Ck(2 = - 'K 11 -• N - - - 'V -1i=1l 1'1 2 i =,,+l ''l i h'
e 1

N ros. N r. N

= 1 >r 1, .i -
K___ N , -, . N

]ner i iN N r N ,. :. " h sl; erroseen Onat n

1 e 2.}i - ] i . ZS L o ~ ; {q 3 Si ] ": '

:ts.. .. - .. ..-.. C:iero : sy.-. on -



AD-A09? 377 ARIZONA UNIV TUCSON DIGITAL IMAGE ANALYSIS LAB rig AliAUTOM4ATIC 14ETHOOS IN IMAGE PROCESSING AND THEIR RELEVANCE TO MA--ETC(())
FEB 81 S R HUN4T DAA29-77-6-0175

U14CLASSIFIED SIE/DIAL-SI-O0i ARO-14762. 1-OS N

IIIII"""III
nmmhmhhhlo
lllllMlllll



86

the quantization error is additive, the output error due to

quantization has precisely the same form as the output error

due to sensor noise. It follows from (4-9) that

a2 1 a02(2a 2 + 02 2 (4-37)
cq N1  g

where a2  is the output variance due to input quantization
c

noise having variance a. For quantization to b bits, it

can be easily shown that [Oppenheim and Schafer 1975]

2 2 -2b (4-38)
q 12

The factor of N I in (4-37) (when compared to (4-9)) is the

result of division by N1  in (4-35). From (4-33), (4-34),

and (4-35) it follows that the error in the partial sum in-

jected by round-off and scaling is given by

e cN 1 N

N N1  N N N, i a1 r i  1 1 s i  1 
(i + ) r -- r

i=l 1 '2 i=l 1 i=l 8=1 i=l 1i

N N
+ Z n i  1 i + 3 }  (4-39)

where 3 is the error incurred with division by N2. For

round-off errors, E~e} = 0. For truncation errors, there

is a bias term since truncation always rounds down when the

numbers to be truncated are positive. We will ignore the

distinction here and consider only round-off errors. Since

fi}, V }, {n}, and {5} are statistically independent and,

we assume, uncorrelated with {s} and -r}, it follows that
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E(e 
2 ) C2

e

N 2 NN1 2 N . 1
= E( z + E( ) 2 + L ( 1 z z N N I 5.)Ii=1 i=1 N i-i 1I i=1 i

N N N N1  N1( is. 1 2 1 2
i E ni) + E( i z 6i) + E(i~ 1 i=l i=1 i=1l i=1l

N N
1 2q + N214 2

N2 i2 jl N) oq + q

(4-40)

where R(n) = R (n) = R (n) = R (n) + a25(n ) .  Since
S r g n

a2 >> a 4 (4-40) is approximated byq > q ,

N N
1. N (N 2  + N -+ R (i-j))].(4-41)e 1 N N n i=1 j-1 g

2

Furthermore, N and since ,I a2 < 1 for reasonableN 1  N 2  1 1 n
1 2

choices of N1  and 11 2 it follows that

2 - + - - Z R (i-j)] (4-42)
e qN

2 i= j=l g

Since R (n) < R (0) it is easily shown that
g -g

2 N 1 N N 2 , 2 ,S(i-j) < 2 (4-43)
N i 1 j g - N g r
N2 2~

where g : Etg}. It is usually the case that N2 > N1 and

since u2 < 1 and 2 < 1 it follows that the error variance
g g
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associated with partial sums is approximately given by

22
e Iq[NI + 1] (4-44)

Replacing ck(i) in (4-36) by c(i) + ei and accounting for the

division round-off error, e:, we have

N2 c(i) + e.
1 + e{) (4-45)i=l 2

I The total accumulated error is thus given by

N2  N2

et N i-l e i l e' (4-46)
N 2 is 1 1

Therefore, the round-off error variance, cro' 15

I2 : 1 ?r '2 + N 2  (4-47)

r 2 e 2 q

2 2
N2  cq(NI + 1) + N2 0q

N + 1 + N2

2(1 2) (4-48)
q N2

But N. N/N so

u3 2 2 1
0ro q NN1  ) (4-49)

Clearly, 2 can be minimized by proper selection ofro

N1  although N1  and N2  are usually chosen for convenience in

implementation. The AS-llB-X correlator uses N1 = 8 and

N2  is adjusted to alter the window size (recall that N

NIN 2 ). For large values of N (say N > 64),

2 N 2q (4-50)ro
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Note that if N1  N and N 2 =1, then from (4-49)

20 (N + 2) 02 ( -1
aro q (-1

so the scaling of partial sums has reduced the round-off

error by slightly more than a factor of 8 in this case.

This translates to a gain of approximately 1.5 bits of

effective precision.

Floating Point Processing

Floating-point processing eliminates the need for

data scaling since register overflow conditions can be

detected and handled by the exponent of the floating-point

number. For this reason, we need only consider round-off

g errors. To simplify the analysis, each of the two terms in

the covariance function is analyzed separately. First con-

9 sider the sum of products term

N
Ic Z r i rs. (4-52)

g The accumulation of error in the computation of a sum of

products has been analyzed (Oppenheim and Schafer 1975,

p.439] in the context of quantization errors due to finite

register lengths in floating point digital filters. The ap-

proach here is similar although the results developed here

apply specifically to correlation.

With floating-point comp utations the errors are

signal dependent and may be written as
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where we assume that is a sample from a distribution uni-

form on (-T 2 2 22) where, again, b is the available regis-

ter length. As before, the round-off error variance is given

by (4-38). If we let {S I be the sequence of partial sums:

i

SZ =lr s (4-54)

then

S1 I r1sI(l +

S2  =[r 2s 2(l + 2 ) + S l(' + n2 ) (4-55)

= [r 2s 2 (l + 2)  + rls1(l + 1)](l + n2)

S3  [r3s3(l + 3) + S2](1 + n3)

[r 3s 3 (l + 3) + r 1S2(l + 2)(l + 2)

+r 1Sl(l '1 + '12 )](l + )

where {n} is the sequence of addition round-off errors which

are also assumed to be zero-mean Gaussian with variance given

by (4-38).

Continuing in the above manner, it can be shown that

N N
SN j Z sjrj(l + 1) (1 + n i  ; n 0 (4-56)

j :l i 1

From the assumptions on {} and (n} we can write

N
S= Ajrjs (4-57)SN j :

where

N

A. : . (I + i) (4-58)
I 3 1j
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and we have dismissed with the distinction between {j} and
{H}. The cumulative round-off error, eN , is then given by

eN :SN -c 1

N N
z Airis - z r.s. (4-59)i=l 1 i1 i=l 1 1

N
- (A 1) ri sSi-I i i

Taking expectations in (4-59) w th respect to round-off

noise, we have

N
E~eN }  = V ris i  E(A i  - 1) (4-60)

From (4-58), it is seen that

N
E{Aj = (1 + E{j}) : 1 (4-61)

i=j

so that

E{eN} = 0 (4-62)

The correlation output variance is thus given by

eN E(e)

N N
: E( z ris (Ai  - 1) z rjs.(A - 1)) (4-63)

i=I 1 j=l J

NN
E z r.r.s.s. E((A )(A - I))

i=l j=l I 3 1 1

Now

E((A i  - 1)(A. 1)) = E(AiA.) - 1

and
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N N
E(AiAj) = E 7 (1 + ; ) (l +=i k=j

: E ((1 + N) 2(1 + N-12 1 + + IL-1

0 + M ))  (4-64)

where

L = max(i,j)
(4-65)

M = min(i,j)

Therefore

E(AiAj) [E(l + ) 21 N-L+l (4-66)

+ C2 )N-max(i,j)+l
q)

It can easily be shown that if e << 1, then

(I + E)M _ M + 1 (4-67)

Combining (4-63) to (4-67), we have

2 =2 N N
e q rirjs s (N - max(i,j) + 1) (4-68)eN q i- 1 j 1l

The value of a" clearly depends upon the input dataI eN
sequences. Reintroducing the shift parameter k and taking

expectations over the input processes yields

2 2 N N
aeN(k) q Z Z E(r r s s )(N - max(i,j) + 1)

e N q il i= I ijii+k j+k
(4-69)

As before, the fourth order moment can be simplified for

zero-mean Gaussian processes for which (4-21) applies. For

non-zero-mean processes, consider
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E((r' + ,j)(r- + i)(s' + )(s' + ) E(rirjs Sn)
1 m n 13immn

where we assume the processes have identical means and the

primed quantities are zero-mean. Since all odd order mo-

ments of zero-mean Gaussian processes are zero [Whalen 1971,

p.97I it follows that

E(rirjSmSn ) : E(rr-s's) + v2 C (i-j) + C (m-n) + C (i-m)ijm n 1jmn r s rs

+ Crs (i-n) + Crs(J-m) + Crs (j-n) + v (4-70)

Combining (4-21), (4-69), and (4-70), we have

2 N N 2 2
2eN (k) = z [ ( C rs(k) + Crs (i+k-j)Crs (j+k-i)ten(k i:! j=l ~)+Cr sr

+ 2 (2C(i-j) + 2Crs (i-j) + Crs (j+k-i) + Crs (i+k-j))

+ 4 max(i,j) (4-71)

where C(n) = C r(n) = Cs (n) and max(i,j) replaces N - max(i-j)

+ 1 due to the symmetry of the autocovariance functions and

the fact that all terms depend only on the difference i - j

and not on these individual values.

To complete the analysis of round-off errors in float-

ing-point correlators we need to consider the term

=I r z s (4-72)C2 N i i

If the images are quantized to N = 2 b levels, then errors in

each of the summations in (4-72) occur only as a result of

overflow. Thus to develop an expression for the cumulative

error in (4-72) we should consider the probability that such

an overflow will occur with each addition, or equivalently,

the expected total number of overflows that occurs in the
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I computation of (4-72). Even if the distributions of r and s

were accurately known, however, the computation of overflowi
probability would be cumbersome since the likelihood of an

i overflow at a given addition operation depends on whether or

not an overflow occurred during previous additions. To avoid

I these complications, we assume that round-off errors occur

with each addition and realize that the result will over-

estimate the error variance. We thus consider

1 N N

c2 (k) N ri(l+:.i) Z s +k(l+ri) (l+el) (l+e2) (4-73)
i=l 1 1 ik

where I = r'l : 0 and e1 and e 2 result from the computation

of the product of sums and division by N respectively. The

accumulated error in (4-73) is given by
1 N N

e(k) = c2  Z r Z (474)
-2I l  ri i=l i+k

I N N N N
N (l+e l )(l+e 2 ) r iZ Si+kn i + Z si+k 1 ri ii= 1~ i~l i 1

N N N N+ Z r i~ i''ISi~ + .1 (el+e2+ele2) Z r.Z

=l - - i=l i i=l i+k

(4-75)

The statistical independence of error terms implies

that

2 2 1 22 N 2
(k) = E(es(k)) N (l+oq) E[( 1 Z ris.+kn.e i N2 j= l ikJ

N N 2 N N 2+~ j( SjZ r i + ( z - r)2]

i=l j=l ,i=l j=l i i s j + k

1 2 N N 2
+ L E(e +e +e e ) E ( Z r. S ) (4-76)
N 2i=2 j=l 1 Sj+k

I
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Eliminating all terms involving powers of q greater

than 2(since 4 << 2 ) we haveq q

2( 22 N N N r 2k N N N N

2k 2 2 s 2 NNNN
E(rr ) + z Z 2 E(r r SmSm).(4-77)

eir -2 cqjmjn~ i jm+k m+k
i j m m" i j m n

Application of (4-70) results in

ze (k) 2 2 2 (C(i-j)C(O) + 2C(m+k-j)C(m+k-i)

+ 2 (c(i-j) + C(O) + rCrs (m+k-i)) + P2)

+ 7 7 Z (C(i-j)C(n-m) + C rs(m+k-i)C rs(n+k-j)
i j m n

+ Crs (n+k-i)Crs (m+k-j + u 2(c(i-j)+C(m-n) + Crs (m+k-i)

+ Crs (n+l-i) + Crs (n+k-j) + Crs (n+k-j)) + u4) (4-78)

B
I
I

I

I

I

I
I
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Summary of Correlation Noise Ouantities

At this point, it is worthwhile to collect the various

error terms for purposes of comparison. The expression for

sensor noise, self-noise, and machine noise are listed below.

Sensor Noise: From (4-9),

2 (k) N 2 (2,2 + _2) (4-79)
e c n g n)

Self-Noise: From (4-23), removing the sensor noise,

2 - N N 2c(k) E 7 z [C (i-j) + C (j+k-i)Cg (i+k-j)] (4-80)
i=lj=l g

A/D Quantization Noise: From (4-37),

2 ( k 1 2 2 2 (4-81a (k) N C q (2 + J )( -1

q 9 q

i Fixed-Point Scaling and Round-off Noise: From (4-49),

N+ 2 + N2
2 k 1 2 ( 1(4-82)sro N q N1

Floating-Point Round-off Noise: From (4-71) and

(4-78),

2 (k) 2 (k) + 2 (k)
ro' eN es

_2 2 + C k) + C (i+k-j)C (J+k-i)
2 N C(i-j)+ Crs

-q 3 rs rs rs

+ 2(2C(i-j) + 2Crs(i-j) + Crs (j+k-i)

I4
+ C rs(i+k-j)) + u4 )max(i,j)

I ~(4-33)
co ntd)
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+ 7 : C(i-j)C(O) + 2C(m+k-j)C(m+k-i)
2 ur1i j m

+ L;2(c(i-j) + C(O) + rCrs (m+k-i)) + 
4

+ 7 z C(i-j)C(m-n) + C (m+k-i)C (n+k-j)
ijm rs rs

+ C~rs(n+k-i)C (m+k-j)rs )rs

+ 2 (C(i-j) + C(m-n) + Crs (r+k-i) + Crs (n+k-i)

+ Crs (m+k-j) + Crs (n+k-j) + 4

(4-83)

with the assumptions that

C(n) C (n) + :2  -(n)
9n

Crs (n) = C (n)
rs g 4-84)

and = E(r) = E(s) = E(g)

Example

The signal dependence of 2 (k) andcro2 (k) and the com-

plexity of (4-33) make it difficult to ascertain the relative

magnitudes of the noise terms for arbitrary source auto-

covariance functions. We must also note that the fixed point

errors resulted from the computation of ck/t rather than

ck so any comparison must account for this factor by multi-

2~ n 2 2plying (k)and (k) by N2  Equivalently we could com-pyn cq sro

pure the correlator output SNR given by

A(k) - E2 (c(k)) (4-85

2 (k)
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where : 2 (k) represents any of the noise terms. There is
1

some question as to whether r. or .2 should be called the out-
1

put SNR. The argument in favor of . is that the correlator

output is actually a "power signal". We have selected A,

however, since it represents the output signal-to-noise

power ratio, regardless of the physical units.

For our example, consider

= 2 1 n)2 I
C (n) exp . __ (4-86)

where represents the correlItion width. Since the noise

and signal processes have been assumed to be Gaussian on

the interval '0,I) (see (4-31)), we will let .05,

2 T4 svleo 2.9 .5, and : n 5 X 10 This value of a implies thatI g ng

about 3% of the total area of the Gaussian distribution lies

outside the unit interval. The input signal-to-noise ratio

is 20Oa . We also select N : 64 and N1  = 8 since they are

typical values employed by the AS-11B-X compiler. The

g correct peak output SNR's (at k =  0) associated with each

noise source are plotted in Figure 4-2 for the selected

parameters. For this example, it appears that self-noise is

the dominating error source regardless of the correlation

width. This result is misleading, however, because the

nature of self-noise differs significantly from the other

noise sources. The self-noise curve in Figure 4-2 represents

the expected amount of fluctuation in the magnitude of the

peak of cross-covariance function due to the random nature
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of the underlying image formation process within a region of

imagery that is assumed to be characterized, in the statis-

tical sense, by the autocovariance function C . The remain-g

ing SNR curves, on the other hand, represent the random fluc-

tuation in peak correlation magnitude at a given location

due to the random nature of the noise source. A second fund-

amental difference between self-noise and the other noise

sources is that the self-noise cross-covariance between taps

increases with -. Figure 4-3 shows the relationship between

the normalized autocovariance function and the normalized

covariances between the center tap and all other taps for

N = 16 and = 1., 5., 10., and 20., assuming the autocovar-

iance function of (4-86). For this particular example, the

tap covariances are slightly greater than the input signal

covariances for identical function sample separations, i.e.,

E(CoCz) > E(gkgk+i) V Z > 0 (4-87)

g These properties of self-noise make it difficult to

determine the contribution of self-noise to correlation

error production. Since our goal is the development of

usable image quality measures, an experimental approach

based on the probability of false acquisitions is developed

in the following section. Two image quality features, one

of which ignores the contribution of self-noise, are devel-

oped using (3-39). The performance of the measures in a de-

tection scenario will be discussed in Chapter 6.
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False Acouisition Measures

Equation 3-3c) cefines an image quality reasure

N 
2

4 c k4-88)

where c (k) is the correlator output standard deviation at

tap k due to noise injection of the various types cescribed.

For tne present, we will ignore quantization noise and machine

noise 'simulations nave been performed using floating point

ariznmetic with 24 bit precision which, provides an SNR of

over 1i0 d, and consider two expressions for Q based on

sensor noise only for which

I

'k) - (2: 2 + :2 (4-89)

ani for sensor noise plus self-noise for which

(2 2 + _I ) + 2 (ij):c k : [ n g n 9g

I

+ C (i+k-j)C (j+k-i) 2  (4-90)

wnicn for lirze k becomes

2 2 2 2 2
:c k n-- {q 2(2-, 9 ) + n + C (i-j)] 4-91

0or white noise input, (4-91) becomes

k 2 + - 2 -2
c g s r (4-92)
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where the model of 13-7) with a 1 is assumed. Since the

contribution of self-noise to error production is unclear,

and to avoid the computation of the autocovariance function

(which may not be a good statistical representation of cor-

relation behavior when estimated over small data sets), we

introduce the factor , and let

1

wc(k) ' v XN a4 + 22 G2 + 4]2 (4-93)

gg~where

i 0 < < I

since

N N 2 2 4
0 < Nc 4  < Z z C (i-j) < N a (4-94)

i l jl g g

if 0 0, (4-93) reduces to (4-89) and if . = 1, (4-93) re-
a o- w t(4-9

duces to (4-92). While there are a variety of ways to make

adaptive (such as computing (4-90) directly) we consider

the expression

1 + 1) (4-95)

where

2 2a r n 2 2
r °n if a > a

2 r nr
0 (4-96)

o

0 otherwise

This choice of N is motivated by the reasonable assumption

that low variance imagery typically displays a broad
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autocorrelation function whereas high variance imagery tends

to generate narrow autocorrelation functions. Substituting

(4-93) into (4-88) yields

/- SNR

[.,N(SNR) 2  + 2SNR + 1]l/2 (4-97)

where SNR 2 /c- 2 is the input signal-to-noise ratio. Sinceg n
2 must be estimated from r (or s) we compute

2 - 2
r n 2 2

2 ; r n
n

SNR= (4-98)

0I; otherwise

Figure 4-4 displays the single tap false acquisition

probability, PFA' as a function of Q. The behavior of Q as

a function of SNR and X is shown in Figure 4-5 for N = 21

and 64. Note that the larger fixed values of x (say \ > .5)

do not result in reasonable ur observed) values of PFA For

example, for ; = .5, the single tap false acquisition prob-

ability cannot be improved beyond PFA 1 regardless of the

input SNR and window size. While PFA is only an indication

of the true total false acquisition probability PT (over all

taps), it is necessary that P T > PFA"

Regardless of how Q is computed, there is a one-to-

one relationship between SNR and PFA" Thus it is reasonable

to consider the alternative quality measure Q, given by

SNR (4-99)
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which is also shown in Figure 4.5. If 2 is a known constant
n

then Ql varies directly with the local image variance.

The use of the quality measures Q and Q in a threshold de-

tection algorithm will be discussed in Chapter 6. It is

clear, however, that the choice of Q and A alters the pdf of

5 the quality measure which, in turn, affects the selection of

appropriate threshold levels.!
Estimated Mean Square Error

A closed form expression for the estimated mean square

error defined by (4-3) can be derived by extending the result

in (3-36) if we assume that the correlator tap outputs are

statistically independent. If such is the case, then

0 x
, nITL (y)dy p (x)dx (4-100)Pn = n -L - Pcn c

n tZ

where p (x) is the correlator output pdf at tap k. Underck

the assumption of Gaussian pdf's, (4-100) becomes

W L u(x,n,Z)
p: =Ga

P n:-L Gaus(y)dy Gaus(x)dx (4-101)

nt-

where

c (Z)x + N(C rs - C rs (n))u(x,n f) =  ; (n) (4rs2
a (n)( -02

Computation of (4-101) generally leads to overestimates of

MSE because the tap covariances are neglected. This can be
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counteracted to some degree b imposing the constraint that

[Ryan and Hunt 1980]

L

=r : 1 (4-103)
Z=-L

The computational complexity of (4-101), however, makes it

cumbersome to use as an image quality feature.

Input Data Non-Stationarity

Virtually all of the literature on correlation

behavior ignores the effects of non-stationarity of input

data. Each of the expressions derived in the preceding sec-

tions require the assumption of stationarity to express the

expected behavior in terms of ensemble statistical averages

(means, variance, autocorrelations, etc.). To make use of

these results, however, requires estimating the statistical

averages from finite data records which, in turn, requires

that the input data be both stationary and ergodic. Images,

however, are notoriously non-stationary. The local statis-

tics within a windowed image can change drastically as the

window moves from one location to another particularly if

the window passes an edge (a local discontinuity in image

luminance or amplitude level) between reasonably smooth

regions. Many image processing algorithms (for restoration,

enhancement, etc.) are improved by adapting algorithm para-

meters to local image statistics to account for the non-

stationarity of the image. Improvements in correlation

accuracy can be achieved in a similar manner as the following

discussion implies.
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The assumptions leading to covariance as the ML proc-

essor include the assumption that the variance (or energy)

of the search area subimage does not change appreciably over

the search area. If this assumption is violated due to the

presence of an edge within the search area, the resulting

behavior of the covariance function is, in many cases, pre-

dictable as the following example implies.

Consider the sequence of picture element values shown

in Figure 4-6. 'We select from this sequence a match window

of length 5 centered on position 2. This match window is

thus the sequence (46453. This window is then corre-

lated with the entire sequence using the covariance function

as a measure of similarity. The resulting correlation func-

tion is shown in Figure 4-7a. The location of the correct

correlation peak is denoted by location 0. The peak ac-

tually occurred at location 4 so there is a registration

error of 4 pixels. Figures 4-7b to 4-7j display similar

results for all other match window positions selected from

Figure 4-6. All match window positions chosen have maximum

cross-covariance corresponding to center Positions 6, 7, or

8 in Figure 4-6. These points form the transition region

(edge) between two regions in which the statistics change

much more slowly. The only correct correlation results in

this experiment occurred for match window center positions

7 and 8. Since covariance removes the means from the se-

quences, the covariance processor can be thought of as

imposing stationarity of the mean upon the process. However,
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no correction is made for non-stationarity of the variance.

Normalized covariance, however, imposes stationarity of the

variance upon the process by normalizing the signal energy

at each position. As seen in Figure (2-7), the error be-

havior appearing in Figure (2-5) does not occur. Normalized

covariance is a special case of generalized least-squares

given in (2-20) so we expect least squares to behave in a

manner similar to normalized covariance in the vicinity of

an edge. Figures 2-10 and 2-11 indicate that this is, in-

deed, the case.

A close comparison of Figures 2-9 and 2-4b (by using

an overlay) shows that there are regions of considerable

error located along the edges of Figure 2-4b. It is also

clear that positive errors generally lie on one side of an

edge, while negative errors lie on the opposite side. This

behavior is also noted in Figure 4-6. It is thus reasonable

to conclude that at least some of the errors occuring in

Figure 2-9 as a result of covariance processing are due to

the presence of edges which violate the assumption of image

stationarity.

We present here two approaches to the detection of

such regions. For stereo-pair images with negligible relief

distortion, the value of the covariance function at the cor-

rect peak location is an estimate of the energy within the

ima je region under observation. As before, we assume the

distribution of image energy is Gaussian, i.e.,
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Pe(x) 1 exp[- (x - C(O)) (4-104)
c(0) 2cj( O

The presence of an edge-produced region of non-stationarity

results in a large peak covariance value due to the high

local energy (or variance) across the edge. Thus given the

distribution of (4-104), we can select a threshold t such

that

g Prob[Co > t] j Pe(x)dx (4-105)

t

is some desired value. Such a detection scheme could be

implemented either as a preprocessor or as a reliability

measure used during the stereo compilation procedure itself.

Detection of these regions would enable an adaptive processor

to convert to normalized covariance or least-squares corre-

lation in the region of expected difficulty. The processor

returns to covariance processing when the numerator of the

normalized covariance function or one-half of the first term

in least-squares correlation falls below the selected thresh-

old.

It is also interesting to consider the conditions

under which covariance produces errors and least-squares

(and presumably normalized covariance) produces correct peak

locations. Suppose the correct hypothesis (using the nota-

tion of Chapter 2) is H. but that covariance selects H..

This condition implies that
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(covariance): r's(j )  - r's(i )  , 0 (4-106)

(least squares): 2r's(i) - s(i) (i) < 2rss(j) - s' s(j)

(4-107)

where we assume the means have been previously removed.

Equations (4-106) and (4-107) can be combined to yield

g s s - s s i ) > 2(r s j  
- r s(i)) > 0 .(4-108)

This condition simply states that the covariance processor

can select H. only if the energy of subimage s is gr _ter

g than the energy of subimage s(i) It is at least intuitively

reasonable that the quantities

ij s (i ) - si s (4-109)

I and

.. 2r.( (j) - (i)
i j - - s() ( 4 - 1 1 0 )

are correlated so that as ij increases, the probability

that £ij >  0 also increases. If the distribution of 6ij

conditioned on i p( I -j i ) were known, it would be

possible to establish thresholds on Eij which would allow

the detectio of image regions for which Prob [Eij > 0] ex-

ceeds a maximum acceptable error rate. Such a distribution

could be determined experimentally with sufficient computing

power and a set of "representative" images. A processor

which might be employed in such a detection scheme is shown

in Figure 4-8.
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Since Ithe computation of p( c) may be computationally

prohibitive, a more realistic approach can be developed by

noting that --is related to the gradient of the image energy.

A simplified pre-processor based on this realization is shown

in Figure 4-9. In Chapter 6, we present experimental results

to indicate the feasibility of such a procedure. This dis-

advantage of this approach is that the resulting error map

g indicates only -the locations of Points corresponding to high

error probabilities and information concerning the error

magnitude is lost. Such a binary error map could be used to

switch the compilation processor from covariance to a more

reliable technique, and this may be all that is required.

The Extension to Two Dimensions

The various correlator 'output noise variances given

in (4-79) to (4-83) were derived under the assumption of one-

dimensional source sequences and a one-dimensional search.

Of these quantities, only self-noise, (4-80), and floating-

point round-off noise, (4-83), are dependent on the signal

statistics and thus, on the shape of the match window. Since

both of these expressions result from the expansion of the

fourth order moment given in (4-21), the extension to two-

dimensional simply requires the corresponding expression for

the two-dimensional case. Beginning with the 2-D expression

for the covariance function given in (4-5) and ignoring the

sensor noise, we have
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M N
c(k,Z) = 'i3gi+k j+ (4-111)

M N M N
F4N - gi g + gi k ,i+ t
M =1 j=l ' i=1 j=1

Assuming, as before, that the error in estimating the mean

is negligible, we let g be zero-mean. Thus

M N M N
(c(k,Z)c(m,n)) = z a Z gi jgi+k,j+ga,bga+m,b+n

(4-112)

But the two-dimensional counterpart of (4-21) results in

I MNMN

E(c(k,Z)c(m,n)) Z - -z C (kE)C (mn) (4-113)
i j a b g g

+ C .(a-i,b-j)C (a+m-i-k,b+n-j-/)

f + Cg(a+m i,b+n j)C (i+k-a,j+Z-b)

The individual tap variances result from (4-113) and (4-111)

when k = m and Z n for which

2 (k,) E(c 2 (k,1)) - E 2(c(k, ))
c

M N M N 2
E z C (a-ib-j) (4-114)
i j a b g

+ C (a+k-i,b+l-j)C (i+k-a,j+Z-b)



CHAPTER 5

RELIEF DISTORTION

In all of the preceding discussion, we have made the

assumption that topographic relief is negliaible so that the9
two image functions differ only by additive noise terms;

9that is, the underlying image functions are identical. The

presence of topographic relief, however, introduces distor-

t tion between the two image functions. The primary effect

of this distortion is a reduction in the peak value of the

cross-correlation function which, in turn, increases the

probability of both local registration and false acquisition

errors. In this chapter, a model of relief distortion is

developed and used to determine the effects of relief dis-

tortion on the covariance function and on the image quality

measures previously discussed.

Relief Distortion Model

Considerthe image formation geometry shown in Figure

1-2. The image generation equations were given in Equations

(1-2) and (1-3) and repeated here:

xI(H - e(X))
g1 (X) I( (5-la)

(x I B x2 (H e(X))

120
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If
BL

X2 1 H - e( (5-2)

where X0  is as shown in Figure 1-2, then xI  and x2  are con-

jugate points and gl(xI) = g2 (x2 ). If there is no terrain

relief, then g1 (xl + tx) = g2(x 2  + Lx). In order to deter-

Tine the effect of distortion on the image functions, con-

sider

I[(Xl + ,-x)(H - e(Xl)

1 (xl + Lx) I = 1(XI ) (5-3a)

and

(x2 (H - e
92(x2 + Lx2 ) = I[ ( + 2) z = I(X2 )(5-3b)

where x + LxI and x2 + x are the images of terrain points

X1 and X2 respectively. We wish to determine the value of

x so that 1  X = X. After some algebraic manipulation

involving (1-1), (5-2), and (5-3), it follows that

S F! 1  - B e(X) - e(X 0)  (
1 XH0  - X0 (H - e(X))

where H0  = H - e(Xo0 . Letting

D(X) = e(X) - e(X0 )D-X :(5-5)

we can rewrite (5-4) as

'x = Lx [1 - B D(X) (5-6)
2 1 HFi + x D(we

Finally, if we let



122

fl(x) gl(xl x)

and (5-7)

f2(x) = g2 (x2  + x)

then the model for distortion can be written as

fI(x) = f2 (h(x)) (5-8)

where

h(x) = x B D(X) (5-9)

and x iz related X by

I x ( H e(X ) (5-10)

Equation (5-8) expresses the effects of relief distor-

tion in terms of the functional composition [Apostal 1974]

of an image function f2 with a distortion function h(x). Now

suppose that C(x) = m where m is a constant specifying the

terrain slope. Then

h(x) = X 1 b Xom] (5-11)

:t is usually the case that H0  >> mX so that

h(x) x[l - nx (5-12)

This result implies that constant terrain slope produces

spatial cnqtraction or expansion of one image function with

respect to the other. The value of L depends on the base-

height ratio, "/H , and the magnitude of the terrain slope

m., with distortion increasing with increases in either of

these parameters.
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The Effect of Distortion
on Correlation Accuracy

The effect of sicnal distortion on the cross-correla-

tion accuracy is most easily analyzed in the continuous do-

main. Consider the cross-covariance function

0

r() = f(x + -)g(x)dx (5-13)

b
2

where 0 is the length of the match window and f and g are

sample functions from stationary, zero-mean Gaussian processes.

if j(;) Kf(x - x

then

D

E(r, )) = K Cf( + x0 )dx = KDCf( ± x0 ) (5-14)

D

and the expected peak location is the translation between

the functions f and g as desired. If g(x) Kf(x - x0 ) for

fixed but arbitrary K and xO , then we refer to g as a dis-

torted version of f, assuming, of course, that f and g are

similar and that true points of conjugacy exist.

'Ae now assume the distortion model of (5-8) and let

g(x) = f(h(x)) (5-15)

.ithout loss of generality, let K = 1 and x 0 s) that the

presence of distortion implies h(x) x. Substituting (5-15)

into (5-13) and taking expectations gives
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D
2

E(r ) = Cf( + x h x )dx (5-16)

D
2

If u(x) - h(x) - x is a monotonic function of x, then there

exists a function z with z(u) = x such that (5-16) can be

,ritten as

E(r z'(u)lrect( )C - u)du (5-17)

where z'(u) = dz/du,

1 for x I

rect(x)

0 otherwise

= + h(-2) (5-18)

and

0 T + h(-T) h( ); 5-19)

The derivation of (5-17) is presented in Ap 'endix B. The

monotonic restriction on u(x) implies that the distortion

consists of spatial compression or spatial expansion but not

both. For aerial imagery taken over reasonably smooth

terrain, the restrictions are minor. if u(x) is not mono-

tonic, then the resulting ensemble correlation function can

be _etermineG directly from (5-16). Equation (5-17) is the

, onvol u ti on
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z -u- rec) (5-20E~r ) = '( ) L e t( ) I

which shows that the effect of relief distortion is to smooth

the correlation function and reduce its peak value. Equation

(5-20) also implies that the peak of the correlation function

may be biased (u 0) so that the choice of the true correla-

tion Peak results in incorrect matching of imagery. The

fluctuation of u provides a limit on the attainable accuracy

even if the imagery is noise-free. It is straightforward to

show that under the assumptions leading to (5-12),

E(u) = 0 (5-21a)

E(u 2) 2 D =2 2 (5-21b)
U

where

23 = E, 2 ) - (5-22)

-lua l ion (5-21t) imolies that the registration bias fluc-

tuation is proportional to the variation in a (i.e., varia-

bility of terrain slope) over the terrain region viewed

through the .atch window. As D increases, the match window

sees more terrain and it is likely that j 2 will also in-

crease. Thus while a larger match window provides better

noise suppression, it increases the susceptibility to regi-

stration bias errors.

For ar-i tr ry terrain, the function z(-) in (5-17)

may be impossible to obtain in closed form (it may not be

.ni"Ue ' . it is obtainable, however, for the special but use-

fil case in which h(x) is given by (5-12). Substituting
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5-12) into (5-2D), it follows that

ux) -- - 1l)x {5-23a)

1 x 23

Z-(u) 1 (5-23b)

and

ECfg ) = DC1 1 reIc (5-24)

Is an example, let the image function f be white noise so

that Cf( ) = s, ,), the Dirac impulse. Then (5-24) becomes

E(r)ect (5-25)

in which the location of the peak is certainly ambiguous,

but most importantly, the peak height is reduced. The re-

duction is most significant for large values of the product

D:a - 1' and for imagery containing high spatial frequency

energy resulting in a narrow autocorrelation function. The

distortion characterized by h(x) = x is analogous to the

doppler shift which occurs in radar systems when there is

relative motion between the target and signal source-receiver

rkolnik 1952].

The effect of the affine transformation h(x) = )x on

correlator performance has been aiaaiyzed by Mostafavi and

Smith [1973a, 1978b] . They also consider a more general

affine transformation which includes a possible rotation be-

tween conjgate regions.

In radar systems the effect of a doppler shift on

the matched filter mismatch is usually considered to be negli-

gible unless the lengthening or shortening of the signal is
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o- the order of the inverse of the signal bandwidth. in

other words, the shift (distortion) can be ignored if

zB
g

where 'D is the change in signal extent and B is the signalg

bandwidth. In the present instance, ID = (I - )D. We will

thus define the distortion measure as

d B Dil - (5-27)

Continuing the analogy between the effects of doppler distor-

tion and relief distortion, we require that

d << 1 (5-28)

In Chapter 6, simulations of the distortion modelled

by h(x) = =x show that (5-28) also applies in image cross-

correlation applications. The use of (5-27) and (5-28) as a

predetection feature depends on the ability to estimate a

from the stereo-pair without actually performing the stereo

compilation procedure. Although such an estimation procedure

will be considered shortly, it is more practicable to obtain

a space-bandwidth map of the images (i.e., a matrix contain-

ing 3 D values corresponding to each image point), then com-g

pute the distortion measure d during the compilation process

where (or more generally h(x)) can be obtained from succes-

sive parallax values. Values of d exceeding a pre-established

threshold indicate regions of probable correlator performance

decradation. improved correlation can be obtained by warping

the appropriate image functions according to (5-15) (effective-

ly forcing , to be equal to 1). An algorithm for the on-line
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spatial warping of image patcnes has been described by Panton

[19781. Such an on-line procedure either requires interpola-

tion on previously stored data, or rescanning the image with

updated sampling rates based on the expected terrain slope

at the next match location. Increased throughput rate could

thus be achieved by performing the warping only when required

as specified by the distortion measure d.

Webber and Delashmit [1974b] have considered the fil-

tering of imagery to desensitize the correlation process to

linear scale-factor distortion described by h(x) = ax. They

conclude that for low SNR and Gaussian autocorrelation func-

tions given by (4-86) that L should be adjusted by filtering

so that = D //6. This desensitization process, however,

ap:ies only to 7ocal registration accuracy. Furthermore,

as we nave previously stated, low SNR imagery typically re-

suls In Droad autocorrelation functions which are already

insensitive to distortion.

As an example of the effect distortion can have on

tne expected correlation function, consider the autocovariance

function used in previous examples:

Cf(i) = x 2 (5-29)

Using (3-14), the bandwidth associated with this auto-

covariance function is given by

B 1 l 5-30)
g 2 -T

Evaluating (5-20) for h(x) = ax leads to
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2 A 2
v

E ~)-__-_-_ 1 e- dvE'r(:*)) = - !v2T e

D (5-31)

Expressing this result in terms of the distortion

measure d, we have

d-i

2
p v

E r - e dv (5-32)

-Trd-

Figure 5-1 displays some representative correlation curves

for several values of the parameter d. The effects of prime

importance are the reduction in peak height which effects the

false acquisition rate and the alteration in the curvature

of the function at the origin which affects the local regi-

stration accuracy (see 3-19). The reduction in normalized

peak magnitude and the reduction in normalized curvature

magnitude are plotted in Figure 5-2 as a function of d. These

effects have been observed experimentally by Casasent and

Psaltis [1976].

The Effect of Distortion
on Error Prediction

In Chapter 3, we saw that the local registration accu-

racy depends on the second moment of the image power spectrum
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Figure 5-1. The Effect of Distortion on
Cross-Covariance Functions
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Figure 5-2. Normalized Correlation Peak Height and

Curvature vs. Distortion Measure for
Gaussian Auto-Correlation Functions
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in the manner described by (3-11). From ( -19) and (3-11)

we see that

2 IN 0/2
- d2 g( )(5-33)

D 1 -

2 T d = 0

Since the curvature of the cross-covariance function decreases

g with increased distortion, a correction factor, kI, can be

included in (5-33) to obtain

2 NO0/2 k1I
>- 2 N(5-34)

- d2C ( )i
1 D T~ d I

D 2 0

where k1 depends on the form of the autocorrelation function

and the distortion measure d. For the Gaussian autocorrela-

tion function, k is obtained from Figure 5-2 and

11
.( d )

2

kI  = e (5-35)

Equation (5-35) describes the approximate increase in the

Cramer-Rao lower bound due to the presence of distortion.

The increase in local registration MSE is shown in Figure

5-3.

The false acquisition probability as a function of

t;e quality measure Q is seen in Figure 4-4. The reduction

in correlation peak value effectively reduces the signal-to-

noise ratio at the correlator output. For Gaussian auto-

correlation functions we can obtain a correction factor k

so that the adjusted quality measure Q' is given by
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Figure 5-3. Increase in Local MSE Due to Distortion
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= Qk 2  
£-36

eere k is shown In Ficure 5-2 and ;iven by

-d
2x

= 2 1 -2
k9 2 - e dx (5-37

7- resulting increase in false acquisition probability de-

:)ends ci the macnitude of Q as seen in Figure 5-4.g
The Effect of Match Window
Size on Correlation Accuracy

.n tne atsence of relief distortion, the correlation

_3ccu acy is expected to improve with increasing window size.

Tnis behavior is predicted by the Cramer-Rao bound as well

-s since 2 increases with match window extent. in the

oresence cf terrain relief, however, the distortion measure

varires directly with match window size. The result is that

hFr d , tnere is an optimum window size, N opt , which will

minimize the correlation error in some sense. The optimum

value of N, however, depends on the criterion to be minimized

and there is no 7eneral procedure for selec ing the "best"

criterion. Obvious candidate criteria include 'a, the mini-

m-ization .f PFA or (b) the minimization of MSE assuming cor-

rect acquisition. These criteria have been exa;rined by

',ostafavi ano Smith i197 , 197Sb assumini a( Qaussian auto-

correlation function. They show that the opti:,um ,value of
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7Figure 5-4. Effect of Distortion on Single Tap
False Acquisition Probability
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N is a function of the correlation width L and "ne distor-

tion d and tha: the optimum value of ' unter criterion (a)

is sligntly larger -30 ) than under criterion (b). In

either case N decreases with increased distortion as oneopt

would expect. Mostafavi [1979] has also considered the opti-

mization of window functions for image correlation. These

-esults were cerived under the assumption that tne affine

transformation describes the distortion globally, i.e., the

c:ometric cistortion is independent of window size and shape.

7n stereo-compilation systems, however, the relief distortion

is location dependent and as the window size increases the

disto-tion tecomes more complex; for large match windows, the

distortion function h(x) = -Ax may not be valid. Most present

stereo-compilers operate with a fixed match window size and

perform spatial warping as described earlier to adjust for

local terrain variations. As stated previously, it would be

useful to be able to obtain distortion information prior to

the compilation process. In the following section, an image

overlay quality measure is developed by considering the ef-

fect of relief distortion on the arithmetic difference be-

tween two registered images.

Est ration of Relief Distortion

we will assume that within sufficiently small image

regions, that tne relief aistortion is modelled by (5-12).

Repeating tne earlier result,
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mB 5-38)

wnere H0  - e ;). he cua :it-es m an 'i can e vewed

as random ,ar iailes i 'i r dep e . or tr ';atch window loca-

tion. S nce H >, e(X), ve will let

H = H E(e(X)) (5-39)

arc icnore: te ef=ect o' variaicns :n elevation on the

iaIue of . rom (5-26), it follows that

B 2 2- lV --- E( , ) .( - 0

B m X) deX I so -40) becomes

22(
E (B 2 5 -( 41H0  d:2 K = (

where R is the elevation profile autocorrelation function.e

As we have seen, the difference between the stereo-

pair mages is the result of topographic relief and noise

sources. Letting gl(x ) and g2(x2) represent the underlying

'mace intensity profiles, we ha'e seen that if x, and x2  are

conJugates tren, in general

g1 (xl) = g2 (x2 ) (5-42a)

Out

g xlI + 2 ( x 2 + (5-42b)

' cw so .pcse we select a region of iragery, Sl (considerably

l r~er c an match window size) , and registe r S with the

-: r ter i e ;tereo-pai . The value of parallax at

ra tion, , rc ,'i'jes us with the mean elevation,
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E 'e(X)), over the selected region and defines a region

S.. which ,s most similar to S1. if the elevation in the

rec:ion is constant, then assuming the registration is correct,

the difference between elements of S1  and S2  is given by

S2  x2) S1 (X1 ) g2 x2 ) + n2 (x2 ) - g, (xl) - nl(xl)

= n2 (x2  n 1 (x 1 ) (5-43)

ow aef ine

d = E(S 2 (x2) Sl(x l))2 (5-44)

where is the difference variance. From (5-43),
2 2 2 5-n
d ' 2' 20 1 n=d n ~2x2 n xl))2 2 \5-45)

.n the Presence of topographic relief, however, the overlay
2 2

is less accurate and d 2,2. For the mean elevation
d e

tne parallax is given by

e: (5-46)

an.4 tne coordinate transformation that results in correct

registrazion is given by

B '-B') = x I  (5-47)x2= l H - e 57
e

,. to now define

n(x ) S2 (x2 )i  - l (X ) (5-43)
X X -, 2 l

S 2 , 2n 2n d n ,x]) .n expression for d that includes the

re'ief di;tortion can be derived by considering -he ieo;ietry

of Fi'ure 5-5. If at point X in the object soace, e(X) = e

tnen g1 (x 1 ) = g2(x2 ). if e(X) ' el then as a first order
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2 = A l5 1 a 9

,here , is ,e resu tin i fference in ground position of
re-im]es of g(x, and gx ) due z5 the change in

e(X). :f we assume that e( ,  is< a onstant over the interval

r, then 7y iml ar trianl es,

A- __ -eX I ] '5-50)
n O  e

Substi .inc (5-50) into (5-48) and (5-49) results in

Bn
1- 2 n 2x

7 4 u s

-2 2B 2 ( - )2 + 2 2 '5-52)
d hoE e n

where the as-umption is made that the terrain elevation and
terra in, reflectance processes are independent. Taking the

ex i cnations in (5-52), we have

2 2R (2)

0d- 2)0 e --n

nh r e is e roriance of the elevation data within the
e

re,-' , r, enc, seic Dy S Since the photograph intensity pat-

tern is one image of the ground pattern, it follows that

2d2 ( )

- =K--2 - KRi() (5-54)d7 22 g

ihere . is constant which accounts for the change in scale

-na s t r il of roct to image space. _iuations (5-53) and
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7)-".:) can -.e comnined to yield

2
2 2 2 (H_ , 1)e =  : -, --, -, ''T 5-5s)

2
The cuantity :2 can be estimated by computing

2 - (S (x5) - S5x)) (--6'd = M 2SI2S2 S2 2 l l

vnere t.l is the total number of elements in S, :f we now

assue that the elevation bandwidth, e is known and as-

sumed to te constant over the ensemb I e of images, tnen from

tre moment theorem

d 2R
e 2 2-2(37 2

dT2  0 ee

Su bstituting (5-57) and (3-55) into (5-41) results in

1 1)2 (2=) 22(2 22 1 (I
7 e 7a n K R ''( 0)58

g
T:ation (3-;8) reoresents an estimate of the fluctuation of

cce distortion parameter measured over the terrain region

wi e h rflrouch section S

.o summarize, the procedure for estimating E(a 1)2

s a follows"

1 Select region S

(2 .egister 4 ith the oth) er image to

define Spand o
2 e

(3; ' ut .t;e sar..ple difference var -

-n2,3 n c e
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(4) Using either S or S., compute

d2 R (c)
RgO) (7 = G2)2  (fdf

d 2 = 0 9g '

(5) Compute E( - 1) 2 as in (5-58).

The assumption that £e is known is certainly an oversimplifi-

cation since S is also a random variable that is location

:erendent. S cannot be determined without performing tnee

stereo-comoilatin process. In its place, then, the best we

can do is ta use e = E(- ) in (5-53) where the ensemble mean

;s es ;Tmated over an ensemble of known terrain conditions.

,ote also tha"t if there are other differences between the

imaces sucn as a reflection from an object appearing bright

in an image (due to aspect angle) and dark in the other image,

the computation in (5-53) will overestimate the variance of

one distribution of a. in these situations, Equation (5-53)

may, ,dowever, find utility as an overlay quality measure

since any factors that reduce the overlay quality are also

ee te to degrade the correlation performance. We thus

refer to ,32 E(4 - 1)2 computed as in (5-58) as the "effec-

tive" relief distortion.

The Effect of Distortion on Estimated
Mean Square Correlation Error

.ssu mina tnat the d'stribution of L, p (;, were

known , it i :)ossible to adjust (at least theoretically) the

estimate o ! .SE from equations (4-3) and (a-l00) to (4-102)
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by realizing that the cross-covariance functions C inrs

(4-102) a!-e functions of the para rme ter i. We can thus wri te

: (Z)x + N(C ( ,±) - C (n,z))-- c s ZCr s

-c

and compute

NSE , r 4SEd5NES- ( ) p (- )d (5-60)

-CO

where Y SE() is computed from (4-3) with

L u(x,n,e,ca)
p (.) = r Gaus(y)dy Gaus(x)dx (5-61)

n=-L

:n practice, however, it is extemely unlikely that

image data will meet all the requirements leading to (5-61)

(namely Gaussian, stationary data with uncorrelated correlator

top outputs). However, (5-59) provides a means of adjusting

the quality measure Q should the distortion be deemed a poten-

tial source of difficulty. This problem is discussed further

in the following chapter after observing the behavior of cor-

relator percFrmance in a simulation of relief distortion.



CHAPTER 6

CORRELATION ERROR PREDICTION -

EXPERIMENTAL RESULTS

In the previous chapters, an attempt has been made to

develor the theoretical framework on which to base practical

image pre-processing schemes. in this chapter, we consider

the problem of implementing image processing algorithms

within such a framework. Although the resulting complexity

and throughput rate of the pre-processor are of some concern,

we will Postpone discussion of this topic until the behavior

of a variety of processing schemes has been observed. To

simplify the processing, however, we will restrict our at-

tention to procedures which create "quality maps" based on

only one image of the stereo-pair. This eliminates any

scheme that requires the computation of cross spectra or,

equivalently, cross correlation as, for example, in (3-29).

Instead, we will assume the model of (3-7) with =  I. The

quality measures developed in previous sections fall into

three categories: (a) those based on local registration

accuracy, (,b) those based on false acquisition probability,

and (c) those based on the detection of input data non-

stationarity. In category (a) we will look specifically at

the Cramer-Rao bound expression (Equation (3-3)), since it

is independent of the particular correlation algorithm. In

category (b), we will be concerned with the quality measure

144
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Q in its various forms whicn depend on the parameter in

(4- 97. Since the measure 10 in (4-99) depends on the signal

variance which is a measure of local imaQe contrast or tex-

ture, we will also consider some nonparametric local statis-

tics such as contrast modulation and median absolute devia-

tion. These quantities will be defined and discussed in de-

tail in a later section. in category (c) we will confine

the discussion to the variance gradient as discussed in

Chapter 4.

The objective of the experiments in the following

sections is to observe the behavior of the quality measures

and determine the decree to which the quality measures can

be used to detect errcr-prone regions of imagery. Before

Proceedinc, however, it is necessary to formulate a defini-

tion of "error-prone" and to establish appropriate detection

criteria. To this end, consider the stereo-images a and B

ard the two ensembles of "noise-images" 9) and .s}. We

assume the noise-images are statistically independent. We

form a noisy stereo-pair A L 1 and 3 + l' perform the

st -rc-com pilation process and generate an error map, e

as in Figures 2-9 and 2-11. If this Procedure is then re-

peated for and .i = 1 ..... J we can gjenerate an average

s,-uar-d error map,

-2 1 N 2
e eN '1 e (6-1)
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point a.. in A can be defined as "error-prone" if the

associated error point, ei , is such that e > tc  where t

is some error threshold. This definition is appropriate for

the quality measures which fall into categories (a) and (b)

above. For categcry (c), however, we note from Figure 2-9

that the covariance processor produces significant errors in

the absence of additive noise, presumably due to the Dresence

cf edges as discussed in Chapter 4. For this particular case,

an error-Prone point will simply be one that corresponds to

an error value that is greater than tc

There are a variety of methods for ascertaining the

degree to wihich a particular quality measure "follows" the

error behavior. Once an error threshold t has been estab-e

lished, the detection criterion reduces to a simple binary

hypothesis test with hypotheses H0  the point is not error

prone and I : the point is error prone. For a particular

measure C, we can thus select a quality threshold t0  and

comcute the usual detection statistics. Although the de-

cision regions will depend on the particular Q chosen we

will assume for purposes of illustration that the larger Q

is, the less susceptible the image point should be to correla-

tion error (this is reversed for the Cramer-Rao bound). With

this convention we can compute the fraction of hits (H: e..

> tc  and Q < ), misses (M: e. . > t and Q > t), false

alarms (FA: e.. < te and Q < tQ), and correct rejections

(CR: e -j te and Q > tQ). Under this convention,
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" +MH = I and FA = 1. Generation uf this data allows

the construction of ROC (receiver operating characteristic)

curves which are plots of the detection frequency (P0 ),

iersus the false alarm frequency (P

It is also instructive to compute the histoorams of

he cuali - , t easures conditioned on eacn of tnre two hv'Ootheses.

Since it is desirable thaz these_ distributions Le separated,

a measure of the degree of separation is given by

E{Q HOJ - E{Q H l }

Q Q H + ZQIH (6-2)

,,n2 = ( 2 :P ) E2

where H i ) . The larger -Q is, theH.) (( Q;-H.)

less sensitive the detector will be to changes in the threshold

levels t in the vicinity of the optimal (say in the Bayes

sense) threshold. This is desirable since the choice of

-hreshold level in a real operating pre-?rocessor must be

based on simulation results (and experience) and for a par--

ti ular imaqe, is unlikely to be optimal.

We shall proceed by first considering the covariance

processor errors produced by edges. We will then restrict

Our attention to the normalized covariance processor when

w2 consider the quality measures in categories (a) and (b).

Although the false acquisition quality measures were derived

for the covariance processor we recall that normalized covar-

iance simply forces stationarity on the correlation process.

There is no reason to believe that the error behavior of

covariance and normalized covariance are significantly
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iifferent under conditions of stationarity. In fact, in

Chapter 2, it was shown that they are equivalent processors

under conditions of stationarity.

Finally, we will present some simulations designed

to assess the correlation behavior in the presence of distor-

tion modelled by h(x = ax and to determine the utility of

:he distortion measure d discussed in Chapter 5.

inout-Data Non-Stationaritv

The synthetic imace shown in Figure 2-4b was passed

throuch the crocessor shown in Figure 4-8. The variance

estimator was implemented by computing the sample variance

within a window having the same dimensions as the match

window 7 pixels/line x 3 lines, etc.). Since the similarity

search is along epipolar lines, the gradient operator com-

outes the horizontal gradient only using the operator shown

in Figure 6-1. ie number of elements in the gradient

operator is chosen to be the same as the number of pixels/

line in the search window since, for each match window lo-

cation, we wish to detect the presence of any portions of

the search window displaying rapidly changing energy. We

assume that the match window is centered in the search

window, )r more precisely, that the correct subimage is

centered in the search window. This is a reasonable approx-

imation for a tracking correlator since the search is carried

out in a region that is symmetric about the predicted correct
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sublmage location. For a non-tracking correlator, the search

winaow is usually determined by the expected extremes in

elevation. Thus a match window corresponding to an elevation

that is near one of the extremes will result in a correct

subimace which is located near an extreme of the search win-

dow.

The covariance error maps from Chapter 2 and the corre-

sponding variance horizontal gradient maps are shown in Fig-

ure 6-2 for matc i window sizes 7 x 3 and 15 x 3. The dis-

tributions of errors for these models is nearly symmetical

about zero. For this reason, the ROC curves in Figure 6-3

were formed by taking the absolute value of the data in

Figure 6-2 and altering the gradient threshold t for ag

given error threshold te = 1.5.1 The distribution seppra-

tion as a function of t e is shown in Figure 6-4. The stair-

case appearance results from the fact that the errors in

Figure 6-2a are integer-valued so any threshold between n and

n + 1 will result in the same separation.

The regions detected by three different thresholds

are shown in Figure 6-5 where the statistics are color coded.

The point at which the false alarm rate becomes inacceptable

depends on tre spatial relationship between the hit (or detec-

tion) locations and the false alarm locations; false alarms

a:pearin3 in close nroximity to hits c::.n contribute, in this

Ihe ;eparate PR0 curves for positive and negative valued
errors are not significantly different from Figure 6-3.



e 'Iem c.n "s P 4 ix els /li ne i n s e ar zn w -'n cc

Figure 6-1. Horizontal Gradient Operator

'644 (a)

Al.(c

i';re6-. omor~onofCovrinc ErorMas dt

Horizontal~~~c. MrdeS.f raeVrine~G
(a)~~~~~~~I "ro7a -7x24idw %) .G

7-2 x 3isno, Covrin Error Maps 5 window

(d HG7 - 15 x 3 window



I i£

x ,/ /r - window

/ / x 3 match window

2/

S /I

' ,1

Kt

6igure n-3. Curves for ,ri nce 'or zcnta2 ;-adient
rror Thresno'd = .5

7) x 3 mat cn ,inJow

- 7 x 3 ma c n innow

£ ~ ~ ~ ~ r c,) e!r}s~a:' , r ent
'acr:na" ,oraient 13~o



1-2

"-e 4L= 2

".-- - " ., . , = ...
Ik..

% :.4** ..'

.: , - . - - .d iA 3: .,Ia 'HnS ic a i -

- -- = 2.-

Man=

- -" S:



151

her s view, 0 300e0tae>? ct io r. r,.nrtir.teIy, the

::F>n a: whioh false alar'-: oco eP ,.c, ve s s ewhat

e iv e.

Al :houjh the overall Sructure o" the vari-ance grad-

ien- sows similarities to the covariarce error map, it is

e-r that there are -rrors produced '-v ther mechanisms

*. ch,, n crec:, dec-ade 'he dete cn s'-is-",cs. Also,

sioce n be simulation w.s performed using a non-trackin cor-

relat or. ome of the Predicted error locations are not seen

c e cl error .map n or examPle, the white and black

Iu e' features in 1ioure 6-2(b, correspondino to the road

- ri l:- and side of Fiiure 2-T{b) This 4s due to the

-c tha; tne corresonding elevation is near the lower ex-

-ro"e and -: r on- rt ogK n search w ndo.' does rot verlao the

featur'e (road) resultiog in the iarge variance ,:-dient;.

r rm , tne r- n2 on an e t a

. on e rors ' ocur ; tnev a r r- kel 1 at

.., ioca:tions.

t nof Correoation
or Sr. t on a rv Da- i

o n ,:c -, i7! -a n j c c, !I .

',~ ~ rr1 zvr I -'rceoo t3 ne o

nae r ~ rrre] o: . ',- r:-,t. :3r}i_]o t ,on; eror ] r 0£ . id

rn r ::r' ti i anr fa *2 e ee:

i'm' rr or i o j r ' n -0:n dorr e], ) n -,unction,



cver i is iifcu: to classv .r err st su, to rocar

re:i;tra t;<t, or fal se .scabus;tien. cor this rea son, , e wi7 1

cc cornerned on>v with t, decree to whi the ite caIty

- s ., r ' va i r*e rns nr-Qict the ,error coravio.

Fiaure 6-6 sno -s the - ma-) S SE, oenera t n

on r:1o simulation as descried arlier r tq rch

.Cow 0 W I , e S 3 an d l x n v arzn, na-

cs er ic()F2Cd. s in the izage -2,,ensity

' ;:l , , 
','ith a cortiouler coin: in oi~re 6-6 i inearly

eat]d-r t~ n:ear- sq'are-error assomciad with thatpoint.

n ors.- -s '<servoe the -en trivits oc tne various qual ity

'cora to em sour eaa the coa lv maureo s yccco

e over hn; can au o noie s conta;', q ase i try

etin o e a) itv ars

s lt s ' c rs e po yed arc their definitions

tvn in T l , - . Co7'; ', p io of the - l e acquisition

:rj mnm e :, ri tforward. 7he vector r

-ants a ' , r n  d r a ar. -t-e h a <imo and

t ie! ,ihn he 2tst ;, acn wi ndow ed YME

,,. >r,., r- ', '' ". tthe ',S.r a on of data wi thin t'he test ,,' indow.

r.th sr *nooiso rat cn toe cort-
t ei•n . ,h comnuti _ tis ,.1an-

2 2.i - ,  ,; n . . r.;er ' , t-, r n, ''r tnr ,r n is real aced v

- -r n
a
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-atb e 6-I. :mage u y Fe. tures

.ramer- Rao 2ound' CRB L0 2-f f
2~G (f) 24

2 2
-2SNR+

Contrast Xeasures'

variance 2 -1 r r (r -

contra.st modu ,ation = C -'r r - - r )
S n max mn max min

cont diirference = Cdr - r

contrast ratio = C r /rr r aX mTi n

recian absolute
deviation = MA E D r - r,

, >.t •
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The comr utation of the Cramer-Rao bound expression

requires the estimation of the test windo4 power spectrum.

Since the correlation search is one-dimensional (H ipolar

lines), CRS is computed by averaging these quantities over

the lines of the test window. Since the number c data

samples pe' line ( 7 o 15) is small, the data is firs, mul-

4ic ,, byc an aprproximation of the Kaiser winow to smooth

the spetraj es-i_ ate [Harris 1973]. The Kaiser window

aP xrima i n is given by

w(n) :a 0  - a cn2 2

P- a. ccs(5"3n) ;n 0 ,1, ...,N p-l (6-3)

-.q; e r e

a = 0.40243

a I 0.49804

a 2 = 0. 09831

a 3 z 0.00122

,1 , ; t e number of pixels per test window line. Al-

-n- c' ,tncr .iindows could certainly be employed, it was

~ ,c: putation of CR'S witiiue t any windowing led to

- ' : y erratic results.

4 ft r wirdo win the test line, an estimate of the

coa:" o - r lm i s obta i-d by computi n9  the; periodogram

i>:r,-"m an r. a , er 75] . Since this proce dure provides
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an estimate of G f) insteac of G ( we form th e s inate

r n r n

Gg(f) (6-4)
C otherwise

If it should happen that G f) - 0 for all samples over the

percdsgram, then CPS is set to an arbitrary large value.

chon comPu tnc: the ramner-Rao bound on clean imaery, C (f)
g

can be :7easured directly and 17n is based on knowledge of the

associated noisy image statistics.

Error Prediction Performance

Figure 6-7 shows ROC curves for the measurements made

on clen imagery. The corresponding separation measure is

given in Ficure 6-3. The ROC curves and separation measure

zor tne noise contaminated case are shown in Figure 6-9 and

03-l, resoectively. Comparisons of measurements made on

cle-n vs. noisy data for selected features are shown in

ure 6-11 eihich displays the percent reduction in detec-

ti on reuency due to the presence of noise. Al though these

resuts ar'e based only on the synthetic images of Figure 2-4,

-te fol lowing observations are noted:

1 ) The Cramer-,Rao measure provides reasonably

good detection rates only for measurements

based on the 15 x 3 window over imagery

thot is free of noise contaminasion. The

poor ,erformance for the 7 x 3 window case
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.s t.r. t 7. oor ectral e ti mates

oto a e o n su smal1 data records.

Sn e th- Cramer-7.ao - easure 4ei 4ts the

mi - : ouxo er s e c tr u b y t r c s :;j are of the

freouency, it is not surcri- ino that ft is

ensm tive to the presence c white noise.

c.he ,C curves for the v ri'ance and the

fa 1 so c, c u i I t i on u a i ty measures , , are

iden-ical. This results from the assumption

that the noise oower is constant with sub-

i:ma e location and the one-to-one relation-

h-hiD between S'2% and 0 specified by Equa-

4ion AI-97). These quantities differ qreatly,

however, .n separation.

7Che low separation for low error thresholds

seen in Figure 6-8 and 6-10 are due primarily

to the one-pixei errors which are independent

of -ne local image statistics when the error

threshold exceeds 1.0, these? are, in effect,

considered as non-errors and the separation

as' r3 r,--soonds accordingly.

Fo r a .v,'n uo ia y mesasure, an increase in

en,-,ptin implies improved detection (i.e.,

the "it fi a s alarm ratio increases). Wi th

f1w c e.. ron; the, separai on is essen i allv

indeo, n,at of error threshold for threcolds

,re30er tf3n 1.3. r 3ren C-o 7parin ,, twa j tres



howcver , tra faot thou one t re has a

croaate ara t on .o nc thn ter feature

oes not neri! L, I Pin'l imprcved de-

tecticn h ae vior D ., ',,r , in 7 x 3

Si nd ow )

.9 The vari r, t n e v,-,r ous c ntra s

r eas re ovir v r e r oa simi ary P0C

je ha ior an , " re ati'eI a insnsts ve

to noise.
t ... n c urves of ioure -lO esult from
7 C -, j ,ves o F gu r

me surements -ade on a sInr.e noise c r-

tam nated imare, . Mlonte-Carlo approach

similar to ti-e proedure used ta define

error-crone points could :4e employed ut

is com outati r al -prohibitive. urther

ex<per men t.3 on has snown, hc ever, tha

the curves o, Fi -ura 0-9 are re r>-,Sentative

c'-ov,, so ie va it i on anJ ir v rso o,

ore occurs tween trials. One cI-n con-

: onj e.. n behavior of V, K, ,

arc. ,are hec rr / equivalent in ,te FOG
aen:a nc tot , .. , :.s t ' ove w th

,,,'indow :lza mo re than Sne other feoturesnI o I~ M. ovL

. c 2 i o aS r ca, t dDr-

, '-:ri.rinJ .iire G-. ' ures

- , >, ! - r e r nr e n t'! )r, of e



qus? s=y~ -, s r ;r -,r,_, .er n .'aiaes

" - -F f e" s

totn s -r~ r 7,_s rwr %a

it can se sen that r o sear t ion re-

sults -a a s' r u' ion t n

r~ea ,,,' , a t...c..o asssh<t son... .-.. .c] ) ' ,,r'. e' -

-'h"C r,,sre oissnt aIs tk separatic n easure

e T c rC es 2n separat on re--

U crm mrasajreents *n noisy magery

,* re observad ;r ,ourts -12 "d, r, and f

a s note tht r ar se !7 se:ar a: on

jn r r n s n n,, S,/ d4nt g S

I~~ r e a rzw n t to n rexac e

r Sl r C , u c e

i re s s wit p r r n a n r o e ;<t s t , tn

separssirn cc an c p ctr mes

Cle, f any, .a e n a t 1... Q
:or . = 1; is ronsi rably reduced.

r r tre

,.., >'. is superior n w r: ae s to that

, ,, ' '" ,ro , , "! ne qu nti S

.T*], " •- " s:: el t' co: t further

;:st q.t•.n 1]. c r'or -,. : *i sizes. The

:; r ' ' ,r' , ;3 ] -," :'i'0  j r C feon esens:a-

p - " '1 h i flo 1t r 1 1 vean not

'Fr ''Q -- I lI
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Tne 7 C c Ur v 4 c ' 2s a r' at n IS r l0ot pn o r 'd e

a ccmIeto :asrb ..v>: or 5hD OfrrhlCK of a sartioular

i ac,e e -e 3- t D s. ril ' rea3SoDn t n it e i en a se a ar7.

i'i2 fa~ rr 71 reas1 co r- t n s:sp 3re aon
rate :rov:-es no :nsfrmat2Krn concernin9 the spatial reiatior-

ship )e . e - n catiorso hits and false a a rm ; false

a.arm t.a is inc ce c xmit ,o a hit locat tn is more

r ca - ie . --' true. r error ,er, aviior z han a false alarm in

a region ,4'1ere -ay; r, rns errors occur. 3ecause of onis spa-

:.a, rela ions p, - I oK n a t wNhich the fas- a rm fr e-

uency ecomes excessive is difficult to define. As an ex-

apl- , tie co r-Je ed detecio n statistics for t'h.e var ar ca

zeatre are snc,,.n 2F Zigure 6-e a for several different

tnresnos=s arc associaed nit ano false alarmn rates. Note

-rat fr a a se aarm requercy of .21, the false a arm

ccations ,r e e clust-er near the hit locations <ra). How-

ever, for F2: 3 .D, n!merous f ase alarms appear a- locations

c~stant frcm h c locations. T his sehavior is also feature

ecercen:; E i re 6-' b, e see that isolate3 false alarms

assear a- ,'e "o , it rates . , fcr the Cramer-,ao feau- e

Ieasere: S the e ,er aoerv/.

s resnos: oens'ai i

7-cure 6- implies .oat the variance, 7, anc the

i . s n r s -_ r -elati eee in sensi e -o "ne

{ntr c- ,tf D nsse. -hese cujr/es are 9erer -e

/ a! terln2 -ne ea ee oec ison re gons sy .5> 5tin9 t

seat e - -Iesnlc e ano c ,s ilprt tO :et'-m ne ie
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sensitivii.y of the threshold settin to the presence of

noise. f a iiven feature rovideL i. false alarm rate

w4ith a tnreshold setting of tf when easure over clean

imagery, it is desirable that the change in threshold re-

quired to provide a 10S false alarm ra 7e in the presence of

noise be minimhal, or equivalently, we would like the change

in false alarm rate (or hit rate) for a given threshold to

be insionificant. For the features which are based on para-

metric statistics (variance, Q, CRS) the appropriate threshold
2

depends on the accuracy of the noise power estimate, :.
n

Since the estimate of the SNiR incorporates the noise power

estimate, thoe faise acquisition based measures (Q) adjust

accordingly. The variance mteasure could be likewise adjusted.

As an exam pe, Table 6-2 presents some of the raw data used

to generate the ,OC curves of Figures 6-7b and 6-9b. 'ie

note that for , = C, Q provides nearly equivalent nit rates

(K; for toe iven feacure chresholds (- This is not the

case, nowever, for the acaptive . or the variance. he

variance, nowe',er , can oe adjustec by subtracting the noise

power 2= from toe thresnold for the noise case to pro-

vide nearly equivalent ,etection rates.

The features based on non-parametric statistics (>1AD,
2 ,r, Cr' cannot be adjusted so simply since the increase

in feature jaluje due to the injection of known noise power

is aificult to ascertaln and is best -eterminec eToirica 
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Table 6-2. ROC Curve Rw Oata

, 0 Noise Estimate: 2 =

H.49 .61 .70 .83 .90 .94
Clean

FA .007 .016 .029 .067 .12a .200

H .48 .62 .70 .83 .90 .94
Noi se

FA .007 .018 .033 .072 .129 .202

adaptive Noise Estimate: 3 25.

T0 1.25 1.3 1.5 2.0

.72 .83 .85 .90 .97

FA .032 .070 .079 .128 .300

H .53 .76 .79 .87 .96
0 i s e

FA .010 .044 .052 .097 .272

Vari ance
T50 130 125 150 200

.65 .83 .87 .90 .94
Clecan

. .32 .069 097 .130 .190

.75 .82 .87 .92

___ .04-t2 .368 . 996 .16
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Rel ief Distortion Simulations

A series of experi;ients was perfor;ied to observe the

behavior of the correlation processors in the presence of

geometric distortion described by the distortion function

h(x) = ,x where u is defined in (5-12). Table 6-3 shows the

aDoroximate value of --l' as a function of the effective

base-height ratio B/H 0  and the terrain slope m. The simula-

tions were performed for values of a satisfying iK-l i < .2

as follows

(1) A "white" noise sequence is generated

using a random number generator.

2 A "signal" is produced by filtering the

noise sequence with the low-pass transfer

function e- f/s where f is the normalized

spatial frequency ('lyquist folding fre-

quency = .5) and s is the "shaoing fac-

tor" which controls the spatial frequency

content of the signal; the signal band-

width increases with s.

sample sequence, s, consisting of i
s

samples is then selected and stored.

A central Dortion of s is distorted and

resamaoed using Lagrange interpolation

[Stark 1970; to produce a sequence r.

W hite 3auss43n uncorrelated noise of known

power is added to each sequence independ-

enty.



7 5

Table 6-3. 1 l: as a Function of Base-Height
and Terrain Slope

.10 .20 .30 .40 .0

. .08 .16 .24 .32 .40

0.3 .06 .12 .18 .24 .30

.2 .4 .08 .12 16 20

.1 .02 .04 .06 .08 .1

.2 .4 .6 .8 1.0

m



6) The no-Isy match sequence, r + n r is then

correla ted with the noisy search sequence,

, t-n o -enerate a correlation -uncc:on.

(7) T7ne comiputed peak of the correlation function

i s comipared to the correct' peak lIo c at ion a r-,d

the error is retained.

3) Steps 3-7 are reseated >1 times and the re-

sults averaged to yield MSE values for each

4value of the d is to rt ioan p ara met er .

(9) Steps 2-3 are repeated for several shap~no

factors and signal-to-noise ratios.

One product of this procedure i s a 4C- TEr

function which is similar i n nature to tne so-- 1 1-

guity function'' encountered in radar signal

ambiguity functi'on, c(:,,), describe tne enav: r

correlat-ion function as The Parameter is

6-ia1 shows tpical mean ambi i ity : -,j n rc 1- e s

t ic aI a ve r ages of IF1 =20' s am-nple f un cions r o s

and s 0.31 for an eleven-oie : motto_ ri1 nc o. cOe :r,,t or

s 10.0, the primary effect of. the C~stor-ion pa r -,e'_e s

the reduct-i on of" toe magn itude of th,,,e Cc-~rei a ioDn f jn c ion

at toe correct pe3K location. This ef-fect isneiohl,

however, for broac correlat-ion functions (s =.01). n.e

functions 4n Figure 6-14 were generated Lsinc a normnalIz'eo

covariance orocessor; '-he results for unnormalized covariance

are sim-ilar in appearance.
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The m-ean-Square correl ation err-or- a s soc ia-ted I.it

the - -evi ousl descr ib ;Procedure are shown in 7ab I C- 6-

Sn 6- for . 1imoe c ov ariac and normia 1i zec cova ria1nce re-

snectieiv/. Al so a ',ven ar the associ ated dito rt io n m ie as Urc.s

defined by Equation ('5-27). Each entry in thce table corre-

s po n ds '-o 2 0 r e pe t itiun s I,! 20) at an input SNP of 110d3.

The S'I2 is defined in term,,s of" the total, ererovy of the s-

nalI cenera 'ed- in step?2 and not i n termTs of the i ndivi dual

Tatcr wjindow enersies. For this reason, the true input SUP'

tends t, increase wi th shaPi n c factor s. For s > .1I, th e

errors are prniarily due to distor'tion; for s - .1 the 1,cw

~iresults in increased -,rror magnitude which -Is essentialty

indpenentof o~edisorIon. A comparison of tablIes 6-4

and 17-5 imiplies tnat simple covariance is slightly m-ore sen-

s iti ve :o d 1s torti on aneo degrades 'more ra~pidl y wi th decrea si;n-

S* than Joes normalized Covariance. This data also 4ndoi-

c ate2s t o .n e ca.4n ex p Ec t di-1s 'oartion p r odr1u ced e rrors Dsr

v aue s c f th e di41s tor tior.n m-,e a sure e exce ed.'i n,- ;a, 7. Ts

tne inequality, in, -8 sbiould be satisfied-- 3/ ateas' a

factor of .I fo)r this a~licatio- if d isto ar t sn 4s to S

Dome, o ut certain',) not all, correlators in use at

t-n~s t4-e are capable o,:- orrecti4ng for g:eometric distocrtion

up to a te ran s Io pe o~ o;sut -n I 1.) >om -l

t hs in -, s tat
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CHAPTER 7

SUMMARY AND CONCLUSIONJS

The major contribution of this dissertation is the

development and experimental comparison of a number of image

quality measures which, based on the results of Chapter 6,

have exhibited potential for predicting the location~s of

B "error prone" image data. In the process of developing

these features, it was possible to establish a theoretical

framework for the comparison of covariance, least squares,

and normalized covariance as maximum likelihood processors

(Chapter 2). Observations regarding the accuracy of these

processors revealed that the small match window size and

image non-stationarity violate the assumptions leading to

expressions for theoretical correlator accuracy (Chapter 3)

with the result that the performance, in terms of MSE, of

the covariance processor is far worse than is predicted

theoretically. Methods for detecting covariance errors

associated with image non-stationarity have been considered

and have mlet with limited success. The covariance function

has been analyzed in detail to determine the relative cor-

relation output signal-to-noise ratios associated with sev-

eral noise sources (Chapter 4). This information was re-

quired in order to specify the parameters associated with the

false acquisition measure Q. Finally, the effects of image

distortion have been considered (Chapter 5) and we nave

182
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concluded that the prediction of distortion related errors

is best accomplished "on-line", i.e., as the correlation

process is underway, although needed signal bandwidth infor-

mation could be provided in a pre-processing mode.

In this chapter, we provide a brief summary of the

more important results and indicate, where applicable, the

implications regarding the physical implementation of the

various processing schemes. In Chapter 1, we alluded to the

possibility of enhancing imagery to make it less susceptible

to error producing mechanisms. We will briefly consider

this topic here and provide some experimental results. Fi-

nally, a few comments concerning the possible directions of

future work in this area will be presented.

Correl ati on Al gori thins

In Chapter 2, we showed that if we assume the simple

image formation model,

r =ag + nr (7-1)

then maximum likelihood correlation processors could be de-

rived, the form of which depends on the a-priori assumptions

regarding the parameter a. Covariance, least-squares, and

normalized covariance are the products of this approach. If

the stationarity assumption which leads to covariance as the

ML processor is violated, disastrous error conditions can

occur. If we assume that the conditions (original stereo-

pair, geometry, etc.) under which this behavior was observed

(see Figure 2-5) are not pathological, then the capability
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of switching to a more reliable algorithm in the vicinity

of regions violating stationarity is certainly desirable.

The implementation of such a switching capability was dis-

g cussed earlier (Chapter 4). The question arises, however,

as to which alternative algorithm should be selected. Both

least-squares and normalized covariance do not require the

stationarity assumption. Least-squares requires the assump-

tion that a = 1 while normalized covariance requires only

the assumption of the image model which, as discussed ear-

lier, is not entirely valid due to the signal dependence of

the noise. Since these procedures are nearly equivalent in

terms of computational load, it would seem natural to select

normalized covariance. The correlation experiments in Chap-

ter 2, however, seem to indicate that it may be advantageous

to employ least-squares. In order to assess the advisea-

bility of using least-squares as opposed to normalized co-

variance, the Monte Carlo correlation experiment was repeated

for least-squares. The resulting overall MSE values for the

15 x 3 window and 20dB additive noise were .182 for least-

squares and .615 for normalized covariance (measure in units

of pixel spacing). Thus for the images and parameters of

this simulation, least-squares is considerably more accurate

than normalized covariance, particularly since the MSE values

include the unavoidable contour-related errors. We note

further that the maximum MSE associated with any image point

was 20.0 for least-squares and 60.0 for normalized covariance.

A close look at these error maps reveals that the contour-
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related errors are slightly more pronounced for the least-

squares processor which results in the contours being more

smeared out'". The least-squares processor, however, is

less susceptible to errors resulting from low SNR, at least

g for the source images employed in this simulation.

Since the ROC curves in Figures 6-7 and 6-9 are based

only on the normalized covariance, the experiment was re-

peated for the least-squares error map. Figure 7-1 compares

the ROC curves for least-squares and normalized covariance

for the variance measure. The improvement in detection capa-

bility for least-squares, as well as the improvement in MSE,

provides a strong argument in favor of least-squares as an

alternative algorithm. If, however, the assumption that

a =1 is not valid, then it would be necessary to know the

point at which normalized covariance surpasses least-squares

in performance (if, indeed, such a point exists). We have

not pursued this topic further.

The implementation of least-squares or normalized

covariance requires only a few simple additions to Figure

4-1 in order to compute the energy of the search window sub-

image. The resulting processor is shown in Figure 7-2 in

which covariance, least-squares, and normalized covariance

are all shown as processor outputs. With such an implemen-

tation there is a small decrease in throughput rate and only

a slight increase in complexity. Because least-squares re-

quires only a shift register (multiplication by 2) and a
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subtraction circuit, it is the more desireable from a hard-

p ware viewpoint. From our observation regarding relative

processor accuracy, it would seem that such a minor increase

in complexity is well worth the investment.

Error Variance

I .n In the analysis of local registration errors, we as-

sumed that th.e correct correlation lobe is selected, and

furthermore that the image subsections are large enough so

that the Fourier components are uncorrelated. This approach

led to the development of the Cramer-Rao bound on the accu-

racy of any unbiased correlation processor. An analysis of

the generalized correlator resulted in a generalized maximum

likelihood correlator (given by (2-36) and (2-37)) which

achieves the lower bound under aforementioned assumptions

plus stationarity. Under conditions of high signal-to-

noise ratio, the covariance processor is nearly equivalent

to this "minimum variance" processor. This equivalence,

however, implies that the generalized '!L processor will also

be susceptible to edge-produced errors since these edges

typically are associated with regions of hign SNR. Thus,

while the theory establishes relationships which aid in the

understanding of the correlation process, we have found that

the violation of assumptions necessitates an empirical ap-

proacn regarding specific processor accuracies, at least

for the application at nand where the small size of the

match window is a significant factor. On the other hand,
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when correlating large regions of imagery, the statistics

of the match area are usually representative of the statis-

tics of the search area and the presence of small regions

with atypical statistics can be ignored.

The analysis of false acquisition errors led to the

development of the image quality measure Q which depends on

the local image signal-to-noise ratio. The value of Q is

related to the single-tap probability of false acquisition.

The overall probability of false-acquisition was found to be

impossible, in general, to obtain analytically due to the

non-zero correlator tap cross-covariances. Thus, unlike the

Cramer-Rao bound, the magnitude of Q cannot be directly re-

lated to mean-square-error without extensive simulation.

The form of Q depends on the assumptions made concerning the

degree to which self-noise contributes to error production.

The results of Chapter 6 have shown, however, that the ROC

curve associated with Q is independent of this assumption

(i.e., choice of \). Furthermore, the low apparent sensi-

tivity of the threshold of the X = 0 version of Q to noise

contamination makes this feature an attractive candidate.

A comparison of the range of magnitudes of the features

associated with the three versions of Q (X = 0, k

adaptive) are shown in Figure 7-3. The numbers marked on

the range designation bars indicate the hit rate associated

with tne particular value of Q. Since we cannot translate

the single-tap false acquisition probability to overall

false acquisition probability it is difficult to determine
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which model most accurately represents the process. One

advantaae of the X = 0 model is that the change in detection

rate, say from .5 to .9, requires a larger percentage change

g in threshold (Q) than for the other models. Thus this mea-

sure is least sensitive to errors in the choice of Q.

The detection capabilities of the Cramer-Pao bouna

and Q are remarkably similar for the 15 x 3 matcn ,qincow,

no-noise measurements. This similarity is not ;o surprising

however, when the nature of these measures is considered.

As stated previously, the Cramer-Rao bound measures the

curvature of the autocorrelation function at the origin (or

peak) whereas Q is directly related to the peak magnitude

of the autocorrelation function. It is not unreasonable to

expect these quantities to be highly correlated with the re-

sulting coupled behavior depicted in Figure 7-4; that is,

as the peak of the function decreases (c2C) < c,(O> , the

autocorrelation width increases. Although there are excep-

tions to this behavior, they do not appear to occur with

sufficient frequency to alter the detection capabilities.

Thus the erratic behavior of the Cramer-Rao measure in the

presence of noise makes the use of Q all tne more attractive.

Furthermore, since the magnitude of the false acquisition

errors tend to be larger by their very nature (see Figure

1-1) than local registration errors, they are more likely to

produce a "lost" condition in a tracking correlator and,

therefore, a measure which is sensitive to image data re-

sulting in false acquisitions is certainly preferable.



1 92

C)

/-



193

Implementation of Ima-e
Quality Measures

The computation of image features can be performed

digitally by scanning the film in a manner similar to the

scanning required by the stereo-compiler. Once the subimage

of interest has been digitized, the features listed in Table

6-1 can be computed in a straightforward manner. The con-

trast measures require the least computation since a series

of compare operations will yield the necessary maximum and

minimum subimage density values. The Cramer-Rao bound re-

quires the mcst computation since we must compute either the

periodogram or the autocorrelation function.

The limiting form of the Cramer-Rao measure given by

(3-22), however, can be computed optically without digitiz-

ing the source data. This is accomplished by using coherent

illumination and appropriate lenses to create the optical

Fourier transform. A filter which w:ights each frequency

domain component by the radial component of the spatial

frequency is placed in the frequency plane and the resulting

irradiance distribution is sensed, integrated, and recorded.

This energy represents tne second moment of the subimage

power spectrum. An aperture which provides a pre-transform

windowing function can also be provided. A quick calcula-

tion invol/in 3  the noise power estimate then yielIs the

Cramer-Rao measure. It snould be mentioned that a limiting

factor in any conerent optical computation is the so-called
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"speckle effect" [Considine 19661 which is a consequence

of the fact that the impulse response function of the opti-

cal system is complex which allows for destructive inter-

ference which would not occur in an incoherent system. It

is partly because of this effect that incoherent optical

spatial frequency analysis techniques are being developed

[Cole 19801, [Rhodes i SO].

The variance of a subsection can also be sensed

optically by coherently illuminating the desired subsection,

blocking "dc" in the frequency plane and integrating over

the Fourier irradiance distribution. Given the variance and

the estimated noise power, the quality measure Q can be

easily computed.

The optical measurement of the contrast measures is

not so straightforward. Recent advances in non-linear opti-

cal image processing have resulted in feedback systems using

Fabry-Perot interferometers containing phase recording media

[Bartheoliemew and Lee 1980]. At the time of this writing,

these systems are capable of performing optical image thresn-

olding and analog to digital conversion with a resolution of

about 8 gray-levels [Atkins et al. 1980] which does not

appear to be sufficient for the application at hand.
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Relief Distortion

In Chapter 5, a model was developed which describes

the geometric distortion between stereo-pair images as a

function of the terrain topography. The effect of this dis-

tortion on the correlation process was shown to be a reduc-

tion in the peak height of the correlation function with re-

g suiting increases in local registration and false-acquisi-

tion errors. This behavior, however, was shown to be inde-

g pendent of the statistics of the local image subsection in

a manner described by the distortion measure given in (5-27).

Simulations described in Chapter 6 verified the nature of the

distortion measure. The use of such a measure as an error

predictor is not straightforward however, since the distri-

bution of the linear distortion parameter :t is difficult to

obtain without performing the stereo-compilation process.

An attempt at estimating the statistics of a, however, led

to an "image overlay quality" measure given by Equation

(5-58). The utility of such a measure in the prediction of

correlation behavior is, at this point, uncertain.

The most promising approach for dealing with relief

distorti4on in a pre-processing mode is to compute a map of

the image signal bandwidth to be combined with terrain slope

information acquired during the correlation processing to

yield an estimate of the distortion measure in locations

where the bandwidth exceeds the constraint specified in

Equation (6-6). Geometric correction could be applied at

these points with well-known procedures.
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Image Enhancement for Correlation

In this section, we present three procedures for

suppressing additive noise which may find an application in

improving correlation accuracy. Since the statistics of an

image are usually non-stationary, both spatially variant and

spatially invariant techniques are considered.

The first approach involves simple low-pass filtering

a using a spatial averaging filter. The motivation for this

procedure derives from considering the effect of low-pass fil-

tering on the correlator input SNR. Let {xl,x 2 2 ... ,xN 1 repre-

sent a sequence of samples from a stochastic process and let

N

1Y - N i l x. (7-2)

represent the averaging process. If we assume that the {x i
2each have mean x and variance a then it follows that

y = E y} E x} x (7-3)

and

2 y{y_-,2y = 1 2 + N N27 -2 + E - 7V -2 E z C (i,j) (7-4)

i = j

where Cx (i,j) E (xi-7)(xj- ) is the (i,j)th element of the

covariance matrix of {xi. If (xi , represents samples of un-

correlated noise, then

2
2 = x

y N (7-5)
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If we now let j represent the underlying image data,

gthen the signal-to-noise ratio of the filtered image,

SNRf, is given by

IN N

12+1 + 0(i,j) (7-6)
N g N2 i=l j=-

f S2

N N

SNR N 2  L 4 C (ij) (7-7)

Thus if tne image data is correlated, there can be a net

improvement in SNR (this can also be easily seen by consid-

ering the effecL of low-pass filtering in the frequency

domain). The fractional improvement in SNR is given by

SNRf-SNR N N
f _ 1 7 C (ij) (7-8)SINR Na2 i= j=l

9 i j

Equation (7-8) implies that there may exist an

optimum value of N which depends only on the form of

C a Thus if

N 2
i Cl c (i,N+I) + C (N+l,i)i > (79)

9 9 (7 9

we can obtain further improvement in SNR by increasing

the size of the averaging window. It is also possible

that (7-9) can be continued to be satisfied for all N

as N increases without bound. Although it is not shown
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explicity, (7-9) can be used to determine the optimum

shape and orientation (if one exists) of the averaging

filter as well as the total number of point- since the

spatial proximity of points in the averaging window will

have a bearing on the values of the elements in C . Theg

geometry of the filter which maximizes the SNR, however,

g does not necessarily minimize the correlation MSE, par-

ticularly if the correlation process is carried out along

epipolar lines. For example, a 24-point filter can have

a variety of shapes and orientations (2x12, 12x2, 4x6,

etc.). Smoothing in the direction parallel to epipolar

lines will reduce the false acquisition probability (due to

improved S'JR) at the expense o- an increase in local regis-

tration errors due to the smoothing of the resulting cor-

relation functions. Since local registration errors tend

to be smaller than false acquisition errors, this effect

may be desirable. Furthermore the reduction in signal

bandwidth produced by such filtering results in reduced

sensitivity to relief distortion. On the other hand,

smoothing in the direction perpendicular to the epipolar

lines will result in improved SNR without drastically

smoothing the correlation functions.

Because of the spatial warping due to relief, how-

ever, points in one image lying along a line perpendicular

to an epipolar line are not necessarily colinear in the

other image. Thus averaging data in the cross-epipolar
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direction can reduce the similarity (correlation coeffi-

cient) between the filtered signals. With these considera-

tions in mind, it is clearly more difficult to specify the

optimum window geometry.

A further limitation is imposed on the filtering

process by the quantization required for subsequent digital

processing. Low-pass filtering reduces the dynamic range

of the signal which decreases the correlator output signal-

to-quantization noise ratio as well as the signal-to-

machine noise ratio (see Equations (4-81) and (4-82). Thus

excessive filtering can result in inferior correlator be-

hav i or.

An experiment qas perfor;ied to observe the effect

of low-pass spatially invariant filtering (using averaging)

on the accuracy of the normalized covariance stereo-

compilation. Table (7-1) displays the MSE resulting from

tne correlation process as a function of the geometry of

the averagin2. window. From these results, it is clear that

significant improvemen.t in MSE (on the order of 700) can

be achieved oy simple low-pass filtering. These results

also imply tnat orientation is, indeed, a significant

factor. Note that better results are obtained by smoothing

primarily in the direction perpendicular to the epipolar

search.

Finally, we note that (7-2) can be generalized

to provide for more arbitrary filtering by allowing a
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Table 7-1. Residual MSE as a Functioning of Averaging
Window Geometry, Unfiltered XSE = .2659

17 .309

g 15 .320 .223

13 .329 .222 .240

11 .358 .240 .238 .336j
9 .383 .256 .261 .279 .291

z 7 .325 .294 .283 .287

5 .420 .360 .350

3 .481 .426

1 .866 .707

3 5 7 9

Number of Pixels
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weighting sequence wi} so that

y = iXi (7-10)

I The second approach to noise suppression is based

on the common enhancement procedure known as unsharp mask-

I ing [Pratt 1978]. This procedure consists of subtractin,

i a blurred version (the "mask") of the original from the

original, and then adding the weighted difference image

I back to the original. The process can be described by the

relation [Gray, Hunt, and McCaughey 1979]

Y = G[X-M(X)] + -,M(X) (7-11)

where X is the original image, M(X) is the mask of the

original, G is an arbitrary gain function which may be

spatially variant, and a is a fixed parameter which weights

the mask image with respect to the difference image. For

the present, we let 1 = and define G by

G if 72  > kz2  (7-12)
j1

1 2 x .

x

0 otherwise
2.

where 1x is the measured local variance and k is an'tdjust-

ment factor' which adds some flexibility to the process. :n

regions dominated by noise, the output image approaches tie

mask, whereas in high SNR regions, the output approaci tie

original. A preliminary experiment was performed in which

the maskirg function was simply an averaging filter which

I replaces the center pixel of an MxM window with the mean

I
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value of the window. Pesults are shown in Table 7-2 as a

function of the parameter k for M = 3 and M = 5. As k ,

this methoG approaches simple averaging. The results from

the invariant averaging, however imply that improved results

may be achieved by a judicious choice of window geometry.

Comparison of identical geometries between the methods

implies tnat there is no advantage to unsharp masking.

Finally we consider a procedure known as short

space spestral subtraction which has been recently develop-

ed [Lim 1,930] and has shown considerable promise as a noise

cleaning scheme which is performed prior to the application

of image restoration procedures (e.g., deblurring). This

approach consists of sectioning the original image into

overlapping blocks (16xl6 pixels), windowing the individ-

ual subsections and removing the estimated noise by power

spectral subtraction, a procedure wherein only the ampli-

tude of the Fourier components are altered according tc

the esti':ied noise spectrum which is weighted by a factor

k similar to Equation (7-12). The filtered blocks are

then reassembled to form the cleaned image. Results are

tabulated in Table 7-2 for several values of k.

Although all three noise suppression procedures

provide reduction in correlation MSE, the most encouraging

approach, from both computational complexity and resulting

MSE viewpoint, is the s4mple low-pass filter. Spectral sub-

traction is certainly the most complex in terms of imple-

mentation and does not proviae the flexibility available
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with the other methods. As stated previously, further re-

ductions in MSE can probably be obtained by optimizing the

window geometry and filter weights for the low-pass filter-

ing technique. By observing the histograms of the correla-

tion errors before and after the filtering, it can be seen

that, regardless of the technique, there is a trade-off be-

tween false acquisition and local registration errors. In

other words, the filtering reduces the frequency of the

relatively large errors at the expense of a small (< 50)

reduction in correct acquisitions and an increase in small

error (particularly 1 pixel-errors) frequency.
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Table 7-2. Residual MSE-Unsharp ,',asking
and Short Space Spectral Sub-
traction Noise Suppression,
Unfiltered MSE = .8659

Method k Residual MSE

Unsharp Masking 1.0 .8909

(5x5 mask) 2.0 .6421

3.0 .6133

!
Unsharp Masking 3.0 .5928

(3x3 mask) 4.0 .5537

6.0 . 5261

Short Space 1.92 .7410

Spectial Subtraction 2.56 .7123

3.20 .6997



205

Extensions

The experimental results presented herein are based

on the properties of the synthetic images shown in Figure

2-5. While there is no reason to believe that the results

are not representative of the nature of the correlation pro-

cess and its predictability, there are obvious shortcomings

which would require extensive simulation work to alleviate.

To begin, the accuracy of the correlation processors is de-

pendent on the data acquisition geometry and while we have

included this factor in the form of the base-height ratio

H ,there are trade-offs involved. As an example, we note
0

from Equation (1-3) that an increase in base-height ratio

results in improved elevation resolution but from Equation

(5-12) we see that the increase in elevation resolution

comes at the expense of increased distortion which degrades

the correlator performance. it would be interesting to

consider -,nis trade-off in more detail to determine if

optimum conditions can be specified.

The correlator models developed in Chapter 4 pro-

vide information regarding the necessary degree of machine

precision in order to relegate machine noise as a second

order error source. Further simulation work is required to

verify these models for both fixed point and floating point

processing.
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The detection of sources of edge-related errors was

based on the gradient of the variance map. It is clear

from the results that improvement in the detection capabil-

ity will require a look at the form of the individual image

data sequences with respect to the form of the edge itself.

However, it is preferable that such a processor not be re-

quired to use correlation as a similarity measure (due to the

computational load). In Chapter 4, we presented two approach-

es to the detection of such regions (variance gradient and

and variance outlyer) and it is conceivable that a combina-

tion of these approaches in a pattern recognition mode would

yield an improvement in detection capability.

The use of classica7 pattern recognition schemes

IFukunaga 1972], [Kasdan 1971] in which a variety of fea-

tures are combined in the detection processes has been con-

sidered in the context of correlation prediction .Ryan, Gray,

and Hunt 19801. In such a procedure, feature values as-

sociated with known correlation behavior (MSE) are input

to a pattern recognition package in a "learning" mode.

The pattern recognition algorithms rank and weight each

feature to maximize the detection statistics over the

known behavior. The weightings can then be used in the

detection mode on data for which the correlation behavior

is to be assessed. Preliminary investigations in this

area using the features developed herein, have indicated

that little, if any, improvement in detection capability

is gained by such a combination, presumably because
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all the fratures are, in effect, measuring the same ima ge

qualities (texture or contrast). Further work in this area,

however, is certainly worthwhile although the acquisition of

multiple features as well as the required software overhead

for such a recognition capability must be considered.

i

I
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DERIVATIOi OCF E UATI: (3-36)

We assume that c(0) and c(-) are both Gaussian dis-

tributed with pdf's

2m2 (0)

2 2 (A-0
Pc(O) (X) = "2-, 0 ( I )

and

- (x-DC( 2))2

1 2o2(g)

C ( (x) = 
e

V T- ( '
If we assume that c(O) and c(,) are statistically

g independent, then

00 x

Prob[c(j)>c(O)] =(y)dy p (x)dx (A-2)
*1 i PC(0)(Yd PC(xd

-10 - Z

With sts it-ticr from (A-i) and a change of variables

gi ven by

x-C )

(A-2) becomes

(y-OC(O))2

v(- )+DC(j,) 2o2(0)

,rob c(j>c(O)j Gaus(v)dv
b > J 177z(0)

(A-3)
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Similarly, the substitution 209

leads directly to (3-36).



APPENDIX B

DERIVATION OF EQUATION (5-17)!
We begin with Equation (5-16):

D

E(r(,)) C f(j, + x - h(x))dx (B-1)

D

If u(x) = h(x) - x is a monotonic function of x, then

there exists a function z with z(u) = x. With this change

of variables, (B-i) becomes

2 2

E(r(j )) = . z (u)Cf( u)du (B-2)
h(-b)+q-

Since u(x) is monotonic then either du/dx > 0 or

du/dx < 0 for all xE[-D, ]. But

du - h (x) - 1 - (B-3)
dxz (u)

Thus if du/dx > 0, then z (u) > 0 and

h(2) - > h(-2) + 2 (B-4)

so that

hD D

E(r( )) z'(u) Cf( - u)du , (8-5)

D D
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and if du/dx < 0, then z'(u) < 0 and

h(-2) + D(B-6)

so that, again,

h(- ) +
2

E(r(,)) I z'(u)IC f(I - u)du (B-7)

Combining (B-5) and (B-7), we have

--zu)lrect 2 2 2 Cf(, -u)du (B-8)
I fD+h(-I!) -hC- )j

from which (5-17) follows.I
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